首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   6篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有74条查询结果,搜索用时 93 毫秒
1.
2.
Attention-deficit hyperactivity disorder (ADHD) is a developmental disorder characterized by symptoms of inattention, impulsivity and hyperactivity that adversely affect many aspects of life. Whereas the etiology of ADHD remains unknown, growing evidence indicates a genetic involvement in the development of this disorder. The brain circuits associated with ADHD are rich in monoamines, which are involved in the mechanism of action of psychostimulants and other medications used to treat this disorder. Dopamine (DA) is believed to play a major role in ADHD but other neurotransmitters are certainly also involved. Genetically modified mice have become an indispensable tool used to analyze the contribution of genetic factors in the pathogenesis of human disorders. Although rodent models cannot fully recapitulate complex human psychiatric disorders such as ADHD, transgenic mice offer an opportunity to directly investigate in vivo the specific roles of novel candidate genes identified in ADHD patients. Several knock-out and transgenic mouse models have been proposed as ADHD models, mostly based on targeting genes involved in DA transmission, including the gene encoding the dopamine transporter (DAT1). These mutant models provided an opportunity to evaluate the contribution of dopamine-related processes to brain pathology, to dissect the neuronal circuitry and molecular mechanisms involved in the antihyperkinetic action of psychostimulants and to evaluate novel treatments for ADHD. New transgenic models mouse models targeting other genes have recently been proposed for ADHD. Here, we discuss the recent advances and pitfalls in modeling ADHD endophenotypes in genetically altered animals.  相似文献   
3.

Background

Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ~200 pigs from different commercial crosses were used to address these objectives.

Results

Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09).

Conclusions

Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease.  相似文献   
4.
5.
6.
To survive, animals must constantly update the internal value of stimuli they encounter; a process referred to as incentive learning. Although there have been many studies investigating whether dopamine is necessary for reward, or for the association between stimuli and actions with rewards, less is known about the role of dopamine in the updating of the internal value of stimuli per se. We used a single-bottle forced-choice task to investigate the role of dopamine in learning the value of tastants. We show that dopamine transporter knock-out mice (DAT-KO), which have constitutively elevated dopamine levels, develop a more positive bias towards a hedonically positive tastant (sucrose 400 mM) than their wild-type littermates. Furthermore, when compared to wild-type littermates, DAT-KO mice develop a less negative bias towards a hedonically negative tastant (quinine HCl 10 mM). Importantly, these effects develop with training, because at the onset of training DAT-KO and wild-type mice display similar biases towards sucrose and quinine. These data suggest that dopamine levels can modulate the updating of tastant values, a finding with implications for understanding sensory-specific motivation and reward seeking.  相似文献   
7.
Experimental genetic approaches to addiction   总被引:4,自引:0,他引:4  
Laakso A  Mohn AR  Gainetdinov RR  Caron MG 《Neuron》2002,36(2):213-228
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.  相似文献   
8.
Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.  相似文献   
9.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   
10.
We have developed a new approach to the analysis of hypomethylated CpG patterns within predetermined, megabase long, genome regions. The approach, which we term Non-methylated Genomic Sites Coincidence Cloning (NGSCC), includes three main steps. First, total genomic DNA is digested with a methylation sensitive restriction endonuclease, such as Hpa II or Hha I. Then the fragments corresponding to the genomic area of interest are selected. To this end the fragmented genome DNA is hybridized with a mixture of clones (BACs, cosmids etc.) representing a given region and digested with the same restriction enzyme(s). A special version of the coincidence cloning procedure was developed to make this hybridization selection highly efficient and specific. Finally, fragments of the locus under study are mapped and sequenced. The technique proved to be efficient and specific. As a test, it was applied to the analysis of hypomethylated CpG patterns along the 1-Mb D19S208-COX7A1 (Chr 19q13.12) locus, on human chromosome 19, in normal testis and in seminoma tissues. Some differences in the distribution of hypomethylated CpGs between the two tissues were demonstrated. The methylation profiles in both tissues revealed a clear trend to clustering of non-methylated sites. We also analyzed the expression of genes located within hypomethylated clusters in both tissues. It was shown that, whereas the expression of some of the genes investigated was correlated with hypomethylation of the region, other genes were expressed regardless of their methylation status. NGSCC thus promises to be a useful approach for the analysis of the role of dynamic epigenetic factors in genome function.Communicated by G. P. Georgiev  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号