首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2021年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Over the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells. The cytotoxicity of the complexes was evaluated by an MTT assay, and their mechanism of action was investigated. The results demonstrated that the five complexes inhibited the growth of the S180 tumor cell line, with IC50 values ranging from 22.53 µM to 50.18 µM, and showed low cytotoxicity against normal L929 fibroblast cells. Flow cytometric analysis revealed that the [Ru(gly)(bipy)(dppb)]PF6 complex (2) inhibited the growth of the tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and G0/G1 phase cell cycle arrest. Further investigation showed that complex 2 caused a loss of mitochondrial membrane potential; activated caspases 3, caspase-8, and caspase-9 and caused a change in the mRNA expression levels of caspase 3, caspase-9 as well as the bax genes. The levels of the pro-apoptotic Bcl-2 family protein Bak were increased. Thus, we demonstrated that ruthenium amino acid complexes are promising drugs against S180 tumor cells, and we recommend further investigations of their role as chemotherapeutic agents for sarcomas.  相似文献   
2.

Polymorphism in metabolizing enzymes can influence drug response as well as the risk for adverse drug reactions. Nevertheless, there are still few studies analyzing the consequence of polymorphisms for the Glutathione-S-transferases (GST) gene to drug response in chronic myeloid leukemia (CML). This study reports, the influence of GSTP1*B and GSTT1/GSTM1null polymorphisms in response to imatinib in CML patients in a Brazilian population. One hundred thirty-nine CML patients from the Clinical Hospital of Goiânia, Goiás, Brazil, treated with imatinib were enrolled in this study. Genotyping of GSTT1 and GSTM1 genes deletions were performed by qPCR and of GSTP1 gene was performed by RFLP-PCR. The frequency of GSTP1*1B, GSTT1 and GSTM1null polymorphisms were determined for all patients. The influence of each patient’s genotypes was analyzed with the patient’s response to imatinib treatment. Brazilian CML patients revealed GSTT1 and GSTM1 genes deletions. GSTT1 deletion was found in 19.3% of patients and GSTM1 deletion in 48.7% of patients with CML. GSTT1/GSTM1 deletion was found in 11.7% in Brazilian CML patients. The “G allele” of GSTP1*B, is associated with later cytogenetic response in imatinib therapy. While, the gene presence combined with GG genotype (GSTM1 present/GSTPI-GG) conferred a tend to a later cytogenetic response to patients. GSTP1*B and GSTT1/GSTM1null polymorphisms influence treatment response in CML. Brazilian CML patients presenting GSTP1 AA/AG genotypes alone and in combination with GSTT1 null reach the cytogenetic response faster, while patients presenting GSTP1-GG and GSTMI positive genotypes may take longer to achieve cytogenetic response. As a result, it allows a better prognosis, with the use of an alternative therapy, other than reducing treatment cost.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号