首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10214篇
  免费   786篇
  国内免费   4篇
  2023年   55篇
  2022年   56篇
  2021年   206篇
  2020年   189篇
  2019年   228篇
  2018年   290篇
  2017年   239篇
  2016年   352篇
  2015年   579篇
  2014年   578篇
  2013年   726篇
  2012年   872篇
  2011年   805篇
  2010年   542篇
  2009年   489篇
  2008年   591篇
  2007年   565篇
  2006年   550篇
  2005年   497篇
  2004年   473篇
  2003年   383篇
  2002年   366篇
  2001年   102篇
  2000年   83篇
  1999年   94篇
  1998年   125篇
  1997年   98篇
  1996年   68篇
  1995年   65篇
  1994年   70篇
  1993年   65篇
  1992年   46篇
  1991年   47篇
  1990年   47篇
  1989年   39篇
  1988年   38篇
  1987年   31篇
  1986年   27篇
  1985年   34篇
  1984年   40篇
  1983年   26篇
  1982年   28篇
  1981年   28篇
  1980年   18篇
  1979年   16篇
  1978年   15篇
  1977年   11篇
  1976年   15篇
  1975年   18篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
FTA® cards were used for long‐term storage of avian blood samples. Blood DNA was extracted by a simple method and used in PCR for sex identification of adult and nestling Great Grey Shrikes Lanius excubitor.  相似文献   
3.
4.
5.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
6.
Assessing small mammal diversity is a common procedure, which usually employs widespread standard techniques, for gathering information for a wide range of studies. Traditional methods, however, may be biased against capturing arboreal marsupials, such as Dromiciops gliroides, an endemic marsupial currently considered a rare species in the Patagonian temperate rainforest due to the low abundances reported previously. I tested a new capturing methodology to assess the small mammal diversity of an old-growth forest in Patagonia, based on a randomized and balanced design, which incorporated a combination of different trap types, bait types, and placement heights. The proposed methodology included four trap types (two for live-capturing: wire-mesh and Sherman traps, and two sign-recording traps for tracks and hair), two types of bait (banana and rolled oats), and two trap placements (ground level and 1.5–2.5 m above the ground). Trap type, bait type, and height of placement all had significantly different effects on capturing and detecting rodents or marsupials; environmental variables at the trap location also affected the ability to detect rodents and marsupials. Traditional methods used for sampling small mammals performed well for rodents but are not effective for capturing marsupials and vice versa, showing species-specific sampling protocols. There is no single combination of trap-bait-height capable to assess the entire small mammal community, but the combination of the most effective protocol for rodents and the most effective protocol for marsupials guarantee better results.  相似文献   
7.
8.
Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.  相似文献   
9.
We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn 97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn 97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号