首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and alpha-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and alpha-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes.  相似文献   

2.
Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring.  相似文献   

3.
We previously reported an exaggerated endocrine and weight loss response to stress in rats fed a high-fat (HF) diet for 5 days. Others report blunted stress-induced anxiety in rats made obese on a HF diet. Experiments described here tested whether sensitivity to stress-related peptides was changed in obese and nonobese HF-fed rats. Third ventricle infusion of corticotropin-releasing factor (CRF) in rats made obese on HF diet (40% kcal fat) produced an exaggerated hypophagia, which is thought to be mediated by CRF(2) receptors. Obese rats responded to a lower dose of CRF for a longer time than rats fed a low-fat (LF) diet (12% kcal fat). CRF-induced release of corticosterone, which is thought to be mediated by CRF(1) receptors, was not exaggerated in obese HF-fed rats. In contrast, rats fed HF diet for 5 days showed the same food intake and corticosterone response to CRF as LF-fed rats. CRF mRNA expression in the paraventricular nucleus of the hypothalamus was stimulated by mild stress (ip saline injection and placement in a novel cage) in LF-fed rats but not in rats fed HF diet for 5 days because of a nonsignificant increase in expression in nonstressed HF-fed rats. In addition, nonstressed levels of urocortin (UCN) I mRNA expression in the Edinger-Westphal nucleus were significantly inhibited in HF-fed rats. These data suggest that rats that have become obese on a HF diet show a change in responsiveness to stress peptides, whereas the increased stress response in nonobese HF-fed rats may be associated with changes in basal CRF and UCN I mRNA expression.  相似文献   

4.
Apolipoprotein A-IV (apo A-IV) is an anorectic protein produced in the intestine and brain that has been proposed as a satiety signal. To determine whether diet-induced obesity alters apo A-IV gene expression in the intestine and hypothalamus, rats were fed a high-fat (HF), low-fat (LF), or standard chow (CHOW) diet for 2, 4, 6, 8, or 10 wk. Rats fed the HF diet had significantly greater body weights than rats given the LF and CHOW diets. Intestinal and plasma apo A-IV levels were comparable across dietary groups and time. LF and CHOW rats had comparable hypothalamic apo A-IV mRNA across the course of the experiment. However, HF rats had a slow and progressive diminution in hypothalamic apo A-IV mRNA over time that became significantly lower than that of LF or CHOW rats by 10 wk. Intragastric infusion of lipid emulsion to animals that were fasted overnight significantly stimulated hypothalamic apo A-IV mRNA in LF and CHOW rats but had no effect in HF rats. These results demonstrate that chronic consumption of a HF diet significantly reduces apo A-IV mRNA levels and the response of apo A-IV gene expression to dietary lipids in the hypothalamus. This raises the possibility that dysregulation of hypothalamic apo A-IV could contribute to diet-induced obesity.  相似文献   

5.
Effects of feeding high-protein (HP) and high-fat (HF) diets to lactating rats have been studied on the development of microvillus membrane enzymes and glycosylation in suckling rats. The activities of sucrase and lactase were significantly (P less than 0.01) decreased in the pups reared on HP fed dams. Alkaline phosphatase (AP), leucine aminopeptidase (LAP) and gamma-glutamyl-transpeptidase (gamma-GTP) activities were essentially similar in HP and pair-fed groups. Pups reared on dams fed HF-diet, revealed nearly a 20% increase in disaccharidase levels and a significant (P less than 0.05) decrease in AP activity compared to the pair-fed controls. The activities of LAP and GTP were unaffected under these conditions. Sialic acid content was unaltered, however, fucose level of the membranes was significantly reduced in pups nursed by mothers fed HP-(P less than 0.05) or HF-(P less than 0.01) diet. The binding of 125I-labelled wheat germ agglutinin and Ulex europeus agglutinin was in agreement to the data on sialic acid and fucose contents of the membranes. The binding of peanut agglutinin to microvillus membranes was enhanced by 31% and 21% in HP and HF groups, respectively. These findings suggest that the quality of maternal nutrition affects the enzymes and glycosylation of brush-borders in developing rat intestine.  相似文献   

6.
The present study investigated whether early life exposure to high levels of animal fat increases breast cancer risk in adulthood in rats. Dams consumed a lard-based high-fat (HF) diet (60% fat-derived energy) or an AIN93G control diet (16% fat-derived energy) during gestation or gestation and lactation. Their 7-week-old female offspring were exposed to 7,12-dimethyl-benzo[a]anthracene to induce mammary tumors. Pregnant dams consuming an HF diet had higher circulating leptin levels than pregnant control dams. However, compared to the control offspring, significantly lower susceptibility to mammary cancer development was observed in the offspring of dams fed an HF diet during pregnancy (lower tumor incidence, multiplicity and weight), or pregnancy and lactation (lower tumor multiplicity only). Mammary epithelial elongation, cell proliferation (Ki67) and expression of NFκB p65 were significantly lower and p21 expression and global H3K9me3 levels were higher in the mammary glands of rats exposed to an HF lard diet in utero. They also tended to have lower Rank/Rankl ratios (P=.09) and serum progesterone levels (P=.07) than control offspring. In the mammary glands of offspring of dams consuming an HF diet during both pregnancy and lactation, the number of terminal end buds, epithelial elongation and the BCL-2/BAX ratio were significantly lower and serum leptin levels were higher than in the controls. Our data confirm that the breast cancer risk of offspring can be programmed by maternal dietary intake. However, contrary to our expectation, exposure to high levels of lard during early life decreased later susceptibility to breast cancer.  相似文献   

7.
We aimed to assess the lasting effects of moderate caloric restriction in lactating rats on the expression of key genes involved in energy balance of their adult offspring (CR) and their adaptations under high-fat (HF) diet. Dams were fed with either ad libitum normal-fat (NF) diet or a 30% caloric restricted diet throughout lactation. After weaning, the offspring were fed with NF diet until the age of 15 weeks and then with an NF or a HF diet until the age of 28 weeks, when they were sacrificed. Body weight and food intake were followed. Blood parameters and the expression of selected genes in hypothalamus and white adipose tissue (WAT) were analysed. CR ate fewer calories and showed lower body weight gain under HF diet than their controls. CR males were also resistant to the increase of insulin and leptin occurring in their controls under HF diet, and HF diet exposed CR females showed lower circulating fasting triglyceride levels than controls. In the hypothalamus, CR males had higher ObRb mRNA levels than controls, and CR females displayed greater InsR mRNA levels than controls and decreased neuropeptide Y mRNA levels when exposed to HF diet. CR males maintained WAT capacity of fat uptake and storage and of fatty-acid oxidation under HF diet, whereas these capacities were impaired in controls; female CR showed higher WAT ObRb mRNA levels than controls. These results suggest that 30% caloric restriction in lactating dams ameliorates diet-induced obesity in their offspring by enhancing their sensitivity to insulin and leptin signaling, but in a gender-dependent manner.  相似文献   

8.
《Reproductive biology》2022,22(3):100674
We examined the consequences of high-fat diet (HFD) on prostate histophysiology in two periods along sexual maturation of rats and the impact on the gland in adulthood. After weaning, male Wistar rats were fed a balanced diet (4 % fat-C3, C6, C9) or a HFD (20 % fat- HF3, HF6, HF9) for 3, 6 or 9 weeks. Fat deposit weights, blood glucose and levels of serum testosterone and estrogen were measured. Prostate was evaluated for histology, proliferative and apoptotic cell index, and for the expression of androgen (AR), estrogen receptors type α (ERα) and aromatase. HFD did not affect estrogen levels and elevated serum testosterone only in HF9. HFD reduced prostate weight in HF6 and increased it in adulthood (HF9) but relative prostate weight was unchanged among groups. Cell proliferation, height and density were higher in epithelium of all HFD-groups, compared to controls, featuring the epithelial hyperplasia. Epithelial apoptosis was lower in HF9. HF3 and HF9 exhibited higher expressions of ERα, indicating that HFD triggers a new activation of ERα expression in the acinar epithelium. The content of prostatic aromatase was also elevated in HF9. Increased numbers of AR-positive cells were observed in all HFD groups, and western blotting analysis showed an increase in the truncated form of 45 kDa (AR45) and a reduction in the expression of 110 kDa-AR for HF3 and HF9. In conclusion, excessive dietary fats during sexual maturation of rats led to developmental programming of the prostate, inducing a hyperplastic status with perturbations in AR isoforms expression and reactivation of ERα in adulthood, whose implications for posterior prostatic health could be detrimental.  相似文献   

9.
Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6 J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11 weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption.  相似文献   

10.
Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent “first hit”, rendering IUGR intestine susceptible to further injury, infection, or inflammation.  相似文献   

11.
Yuan Q  Chen L  Liu C  Xu K  Mao X  Liu C 《PloS one》2011,6(10):e25167
Epidemiological studies have linked intrauterine growth retardation (IUGR) to the metabolic diseases, consisting of insulin resistance, type 2 diabetes, obesity and coronary artery disease, during adult life. To determine the internal relationship between IUGR and islet β cell function and insulin sensitivity, we established the IUGR model by maternal nutrition restriction during mid- to late-gestation. Glucose tolerance test and insulin tolerance test (ITT) in vivo and glucose stimulated insulin secretion (GSIS) test in vitro were performed at different stages in IUGR and normal groups. Body weight, pancreas weight and pancreas/body weight of IUGR rats were much lower than those in normal group before 3 weeks of age. While the growth of IUGR rats accelerated after 3 weeks, pancreas weight and pancreas/body weight remained lower till 15 weeks of age. In the newborns, the fasting glucose and insulin levels of IUGR rats were both lower than those of controls, whereas glucose levels at 120 and 180 min after glucose load were significantly higher in IUGR group. Between 3 and 15 weeks of age, both the fasting glucose and insulin levels were elevated and the glucose tolerance was impaired with time in IUGR rats. At age 15 weeks, the area under curve of insulin (AUCi) after glucose load in IUGR rats elevated markedly. Meanwhile, the stimulating index of islets in IUGR group during GSIS test at age 15 weeks was significantly lower than that of controls. ITT showed no significant difference in two groups before 7 weeks of age. However, in 15-week-old IUGR rats, there was a markedly blunted glycemic response to insulin load compared with normal group. These findings demonstrate that IUGR rats had both impaired pancreatic development and deteriorated glucose tolerance and insulin sensitivity, which would be the internal causes why they were prone to develop type 2 diabetes.  相似文献   

12.
The purpose of this study was to investigate the effects of altering relative intakes of fat and carbohydrates on serum lipid profiles, hepatic acyl-CoA synthetase (ACS), carnitine palmitoyltransferase-I (CPT-I), and the acetyl-CoA carboxlyase (ACC) mRNA level in Sprague-Dawley rats. For four weeks the rats were fed either an AIN-76 diet or one of its modified diets that were supplemented with 20% beef tallow (high-fat diet, HF) and 66.3% sucrose (high-sucrose diet, HS). The HS group had significantly higher serum triglyceride and total cholesterol concentrations when compared with the other groups. Serum LDL-cholesterol concentrations in the HS and HF groups were significantly higher when compared to the normal diet (ND) group. Serum HDL-cholesterol levels of the ND and HS groups were significantly higher than those of the HF group. The hepatic total lipid level of the HF group was significantly higher than those of other groups; triglyceride levels of the HS and HF groups were significantly higher than those of the ND group. Hepatic ACS mRNA levels of the HF group were significantly higher than those of the ND group. Hepatic CPT-I mRNA levels were higher in the HF group than other groups. Also, ACC mRNA levels in the liver increased in the HF group. In conclusion, changes in the composition of dietary fat and carbohydrates could affect the hepatic ACS, CPT-I, and ACC mRNA levels. These results facilitate our understanding of the coordinated regulation of the ACS, CPT-I, and ACC mRNA levels and will serve to enhance our understanding of the molecular mechanisms that underlie the regulation of fatty acid metabolism.  相似文献   

13.
14.
15.
The effect of the dietary fiber on apo B mRNA level was studied in the intestine of rats that were fed either fiber-free or high-fiber (30% sugar-beet fiber) low-fat diets for 3 weeks. The fiber diet studied does not affect jejunal apo B mRNA levels but decreases the level of ileal apo B mRNA. In the rat cecum, in both fiber-free and fiber groups, we failed to detect the apo B mRNA. The test fiber diet feeding markedly increased fecal bile salt and cholesterol excretions. We suggest that dietary fiber can modify apo B expression in the intestine. The increased fecal bile salt excretion might be involved in such a modification.  相似文献   

16.
Epidemiological studies demonstrated that adverse environmental factors leading to intrauterine growth retardation (IUGR) and low birth weight may predispose individuals to increased risk of metabolic syndrome. In rats, we previously demonstrated that adult male IUGR offspring from prenatal 70% food-restricted dams throughout gestation (FR30) were predisposed to energy balance dysfunctions such as impaired glucose intolerance, hyperleptinemia, hyperphagia and adiposity. We investigated whether postweaning moderate high-fat (HF) diet would amplify the phenotype focusing on the hypothalamus gene expression profile. Prenatally undernourished rat offspring were HF-fed from weaning until adulthood while body weight and food intake were measured. Tissue weights, glucose tolerance and plasma endocrine parameters levels were determined in 4-month-old rats. Hypothalamic gene expression profiling of adult FR30 rat was performed using Illumina microarray analysis and the RatRef-12 Expression BeadChip that contains 21,792 rat genes. Under HF diet, contrary to C animals, FR30 rats displayed increased body weight. However, most of the endocrine disorders observed in chow diet-fed adult FR30 were alleviated. We also observed very few gene expression changes in hypothalamus of FR30 rat. Amongst factors involved in hypothalamic energy homeostasis programming system, only the POMC and transthyretin mRNA expression levels were preferentially increased under HF diet. Both elevated gene expression levels may be seen as adaptive mechanisms counteracting against deleterious effects of HF feeding in FR30 animals. This study shows that the POMC gene expression is a key target of long-term developmental programming in prenatally undernourished male rat offspring, specifically within an obesogenic environment.  相似文献   

17.
18.
Total parenteral nutrition (TPN) impairs small intestine development and is associated with barrier failure, inflammation, and acidomucin goblet cell expansion in neonatal piglets. We examined the relationship between intestinal goblet cell expansion and molecular and cellular indices of inflammation in neonatal piglets receiving TPN, 80% parenteral + 20% enteral nutrition (PEN), or 100% enteral nutrition (control) for 3 or 7 days. Epithelial permeability, T cell numbers, TNF-alpha and IFN-gamma mRNA expression, and epithelial proliferation and apoptosis were compared with goblet cell numbers over time. Epithelial permeability was similar to control in the TPN and PEN jejunum at day 3 but increased in the TPN jejunum by day 7. By day 3, intestinal T cell numbers were increased in TPN but not in PEN piglets. However, goblet cell expansion was established by day 3 in both the TPN and PEN ileum. Neither TNF-alpha nor IFN-gamma mRNA expression in the TPN and PEN ileum correlated with goblet cell expansion. Thus goblet cell expansion occurred independently of overt inflammation but in association with parenteral feeding. These data support the hypothesis that goblet cell expansion represents an initial defense triggered by reduced epithelial renewal to prevent intestinal barrier failure.  相似文献   

19.
We have previously shown that adult offspring exposed to a prenatal hypoxic insult leading to intrauterine growth restriction (IUGR) are more susceptible to cardiovascular pathologies. Our objectives were to evaluate the interaction between hypoxia-induced IUGR and postnatal diet in the early development of cardiovascular pathologies. Furthermore, we sought to determine whether the postnatal administration of resveratrol could prevent the development of cardiovascular disorders associated with hypoxia-induced IUGR. On day 15 of pregnancy, Sprague-Dawley rats were randomly assigned to hypoxia (11.5% oxygen), to induce IUGR, or normal oxygen (control) groups. For study A, male offspring (3 wk of age) were randomly assigned a low-fat (LF, <10% fat) or a high-fat (HF, 45% fat) diet. For study B, offspring were randomized to either HF or HF+resveratrol diets. After 9 wk, cardiac and vascular functions were evaluated. Prenatal hypoxia and HF diet were associated with an increased myocardial susceptibility to ischemia. Blood pressure, in vivo cardiac function, and ex vivo vascular function were not different among experimental groups; however, hypoxia-induced IUGR offspring had lower resting heart rates. Our results suggest that prenatal insults can enhance the susceptibility to a second hit such as myocardial ischemia, and that this phenomenon is exacerbated, in the early stages of life by nutritional stressors such as a HF diet. Supplementing HF diets with resveratrol improved cardiac tolerance to ischemia in offspring born IUGR but not in controls. Thus we conclude that the additive effect of prenatal (hypoxia-induced IUGR) and postnatal (HF diet) factors can lead to the earlier development of cardiovascular pathology in rats, and postnatal resveratrol supplementation prevented the deleterious cardiovascular effects of HF diet in offspring exposed to prenatal hypoxia.  相似文献   

20.
The aim of the study was to assess the impact of preweaning overnutrition upon the ontogeny of intestinal microbiota, alkaline phosphatase activity (AP) and parameters of growth and obesity in male Sprague-Dawley rats. We tested whether intestinal characteristics acquired in suckling pups could programme the development of enhanced fat deposition during normalized nutrition beyond weaning. Postnatal nutrition was manipulated by adjusting the number of pups in the nest to 4 (small litters--SL) and 10 (normal litters--NL). In the postweaning period both groups were fed with a standard diet. The jejunal and colonic Lactobacillus/Enterococcus (LAB) and the Bacteroides/Prevotella (BAC) were determined using the FISH technique, and the jejunal AP activity was assayed histochemically. At 15 and 20 days of age the SL pups became heavier, displayed increased adiposity accompanied by significantly higher LAB and lower numbers of BAC and with higher AP activity in comparison with rats nursed in NL nests. These differences persisted to day 40 and withdrawal of the previous causal dietary influence did not prevent the post-weaning fat accretion. These results reveal the significance of early nutritional imprint upon the gut microbial/functional development and allow better understanding of their involvement in the control of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号