首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   87篇
  国内免费   1篇
  2023年   5篇
  2022年   22篇
  2021年   38篇
  2020年   32篇
  2019年   85篇
  2018年   70篇
  2017年   47篇
  2016年   44篇
  2015年   44篇
  2014年   56篇
  2013年   75篇
  2012年   68篇
  2011年   51篇
  2010年   37篇
  2009年   20篇
  2008年   26篇
  2007年   24篇
  2006年   13篇
  2005年   18篇
  2004年   14篇
  2003年   13篇
  2002年   11篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1966年   1篇
  1933年   1篇
排序方式: 共有853条查询结果,搜索用时 15 毫秒
1.
The formation and subsequent resolution of Holliday junctions are critical stages in recombination. We describe a new Escherichia coli endonuclease that resolves Holliday intermediates by junction cleavage. The 14 kDa Rus protein binds DNA containing a synthetic four-way junction (X-DNA) and introduces symmetrical cuts in two strands to give nicked duplex products. Rus also processes Holliday intermediates made by RecA into products that are characteristic of junction resolution. The cleavage activity on X-DNA is remarkably similar to that of RuvC. Both proteins preferentially cut the same two strands at the same location. Increased expression of Rus suppresses the DNA repair and recombination defects of ruvA, ruvB and ruvC mutants. We conclude that all ruv strains are defective in junction cleavage, and discuss pathways for Holliday junction resolution by RuvAB, RuvC, RecG and Rus.  相似文献   
2.
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.  相似文献   
3.
The effectiveness of posterior annuloplasty in two patients who failed to respond to medical treatment for atrial and ventricular arrhythmias related to mitral valve prolapse (MVP) is reported. Although the etiology of arrhythmia in MVP remains mostly speculative, anatomic correction of prolapse or billowing of the mitral leaflets appears to reverse the anatomic and pathologic conditions that cause the arrhythmia.  相似文献   
4.
The transport properties of mitochondria are such that net potassium flux across the inner membrane determines mitochondrial volume. It has been known that K+ uptake is mediated by diffusive leak driven by the high electrical membrane potential maintained by redox-driven, electrogenic proton ejection and that regulated K+ efflux is mediated by an 82-kDa inner membrane K+/H+ antiporter. There is also long-standing suggestive evidence for the existence of an inner membrane protein designed to catalyze electrophoretic K+ uptake into mitochondria. We report reconstitution of a highly purified inner membrane protein fraction from rat liver and beef heart mitochondria that catalyzes electrophoretic K+ flux in liposomes and channel activity in planar lipid bilayers. The unit conductance of the channel at saturating [K+] is about 30 pS. Reconstituted K+ flux is inhibited with high affinity by ATP and ADP in the presence of divalent cations and by glibenclamide in the absence of divalent cations. The mitochondrial ATP-dependent K+ channel is selective for K+, with a Km of 32 mM, and does not transport Na+. K+ transport depends on voltage in a manner consistent with a channel activity that is not voltage-regulated. Thus, the mitochondrial ATP-dependent K+ channel exhibits properties that are remarkably similar to those of the ATP-dependent K+ channels of plasma membranes.  相似文献   
5.
To determine the occurrence and genotypes of Enterocytozoon bieneusi in captive mammals at Bangladesh National Zoo and to assess their zoonotic significance, 200 fecal samples from 32 mammalian species were examined using a nested PCR and sequencing of internal transcribed spacer (ITS) gene. Enterocytozoon bieneusi was detected in 16.5% (33/200) of the samples. Seven different ITS genotypes were identified, including two known genotypes (D and J) and five new ones (BAN4 to BAN8). Genotype D was the most common genotype being observed in 19 isolates. In phylogenetic analysis, four genotypes (D, BAN4, BAN5, and BAN6), detected in 30 isolates (90.9%), belonged to Group 1 having zoonotic potential. The sequence of genotype J found in a Malayan pangolin was clustered in so‐called ruminant‐specific Group 2. The other two genotypes BAN7 and BAN8 were clustered in primate‐specific Group 5. To our knowledge, this is the first report of molecular characterization of E. bieneusi in Bangladesh, particularly in captive‐bred wildlife in this country. The potentially zoonotic genotypes of E. bieneusi are maintained in zoo mammals that may transmit among these animals and to the humans through environmental contamination or contact.  相似文献   
6.
Molecular Biology Reports - Combination therapy has been considered as a potential method to overcome the BC chemoresistance. MicroRNAs (miRs) have been suggested as a therapeutic factor in the...  相似文献   
7.
Molecular Biology Reports - Peri-implantitis (PI) is a multifactorial condition caused by the interactions of pathogens and the host immune response. Previous studies have demonstrated a...  相似文献   
8.
Molecular Biology Reports - Alzheimer's disease is a common neurodegenerative disease in the elderly population and a leading cause of dementia. Genetics and environmental risk factors were...  相似文献   
9.
Varicose veins are the most common vascular disease in humans. Veins have valves that help the blood return gradually to the heart without leaking blood. When these valves become weak, blood and fluid collect and pool by pressing against the walls of the veins, causing varicose veins. In the cardiovascular system, mechanical forces are important determinants of vascular homeostasis and pathological processes. Blood vessels are constantly exposed to a variety of hemodynamic forces, including shear stress and environmental strains caused by the blood flow. In varicose veins within the leg, venous blood pressure rises in the vein of the lower extremities due to prolonged standing, creating a peripheral tension in the vessel wall thereby causing mechanical stimulation of endothelial cells and vascular smooth muscle. Studies have shown that long-term increased exposure to vascular wall tension is associated with the overexpression of HIF-1α and HIF-2α and increased levels of MMP-2 and MMP-9, thereby reducing venous contraction and progressive venous dilatation, which is involved in the development of varicose veins. Following the expression of metalloproteinase, the expression of type 1 collagen increases, and the amount of type 3 collagen decreases. Therefore, collagen imbalance will cause the varicose veins to not stretch. Loss of structural proteins (type 3 collagen and elastin) in the vessel wall causes the loss of the biophysical properties of the varicose vein wall. This review article tries to elaborate on the effect of mechanical forces and sensors of these forces on the vascular wall in creating the mechanism of mechanosignaling, as well as the role of the onset of molecular signaling cascades in the pathology of varicose veins.  相似文献   
10.
International Journal of Peptide Research and Therapeutics - Whereas the traditional approaches of cancer therapy including radiotherapy, chemotherapy, and immunotherapy have failed to properly...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号