首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2013年   1篇
  2012年   3篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Based on time series gene expressions, cyclic genes can be recognized via spectral analysis and statistical periodicity detection tests. These cyclic genes are usually associated with cyclic biological processes, for example, cell cycle and circadian rhythm. The power of a scheme is practically measured by comparing the detected periodically expressed genes with experimentally verified genes participating in a cyclic process. However, in the above mentioned procedure the valuable prior knowledge only serves as an evaluation benchmark, and it is not fully exploited in the implementation of the algorithm. In addition, partial data sets are also disregarded due to their nonstationarity. This paper proposes a novel algorithm to identify cyclic-process-involved genes by integrating the prior knowledge with the gene expression analysis. The proposed algorithm is applied on data sets corresponding to Saccharomyces cerevisiae and Drosophila melanogaster, respectively. Biological evidences are found to validate the roles of the discovered genes in cell cycle and circadian rhythm. Dendrograms are presented to cluster the identified genes and to reveal expression patterns. It is corroborated that the proposed novel identification scheme provides a valuable technique for unveiling pathways related to cyclic processes.  相似文献   
2.
Time series microarray measurements of gene expressions have been exploited to discover genes involved in cell cycles. Due to experimental constraints, most microarray observations are obtained through irregular sampling. In this paper three popular spectral analysis schemes, namely, Lomb-Scargle, Capon and missing-data amplitude and phase estimation (MAPES), are compared in terms of their ability and efficiency to recover periodically expressed genes. Based on in silico experiments for microarray measurements of Saccharomyces cerevisiae, Lomb-Scargle is found to be the most efficacious scheme. 149 genes are then identified to be periodically expressed in the Drosophila melanogaster data set.  相似文献   
3.
In the realm of bioinformatics and computational biology,the most rudimentary data upon which all the analysis is built is the sequence data of genes,proteins and RNA.The sequence data of the entire genome is the solution to the genome assembly problem.The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the nextgeneration sequencing(NGS) platforms.This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles.It is intended to act as a qualitative,not a quantitative,tutorial to all working on genome assemblers pertaining to the next generation of sequencers.We discuss the theoretical aspects of various genome assemblers,identifying their working schemes.We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity.  相似文献   
4.
Recent advances in high-throughput DNA microarrays and chromatin immunoprecipitation (ChIP) assays have enabled the learning of the structure and functionality of genetic regulatory networks. In light of these heterogeneous data sets, this paper proposes a novel approach for reconstruction of genetic regulatory networks based on the posterior probabilities of gene regulations. Built within the framework of Bayesian statistics and computational Monte Carlo techniques, the proposed approach prevents the dichotomy of classifying gene interactions as either being connected or disconnected, thereby it reduces significantly the inference errors. Simulation results corroborate the superior performance of the proposed approach relative to the existing state-of-the-art algorithms. A genetic regulatory network for Saccharomyces cerevisiae is inferred based on the published real data sets, and biological meaningful results are discussed.  相似文献   
5.
Paul Dan Cristea, professor of Electrical Engineering and Computer Science at ‘Politehnica’ University of Bucharest died on 17 April 2013, following several years of bravely battling a perfidious illness.  相似文献   
6.
Recently, the concept of mutual information has been proposed for inferring the structure of genetic regulatory networks from gene expression profiling. After analyzing the limitations of mutual information in inferring the gene-to-gene interactions, this paper introduces the concept of conditional mutual information and based on it proposes two novel algorithms to infer the connectivity structure of genetic regulatory networks. One of the proposed algorithms exhibits a better accuracy while the other algorithm excels in simplicity and flexibility. By exploiting the mutual information and conditional mutual information, a practical metric is also proposed to assess the likeliness of direct connectivity between genes. This novel metric resolves a common limitation associated with the current inference algorithms, namely the situations where the gene connectivity is established in terms of the dichotomy of being either connected or disconnected. Based on the data sets generated by synthetic networks, the performance of the proposed algorithms is compared favorably relative to existing state-of-the-art schemes. The proposed algorithms are also applied on realistic biological measurements, such as the cutaneous melanoma data set, and biological meaningful results are inferred.  相似文献   
7.
Based on gene expression profiles, genes can be partitioned into clusters, which might be associated with biological processes or functions, for example, cell cycle, circadian rhythm, and so forth. This paper proposes a novel clustering preprocessing strategy which combines clustering with spectral estimation techniques so that the time information present in time series gene expressions is fully exploited. By comparing the clustering results with a set of biologically annotated yeast cell-cycle genes, the proposed clustering strategy is corroborated to yield significantly different clusters from those created by the traditional expression-based schemes. The proposed technique is especially helpful in grouping genes participating in time-regulated processes.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号