首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   102篇
  国内免费   5篇
  2022年   4篇
  2021年   18篇
  2020年   4篇
  2019年   15篇
  2018年   16篇
  2017年   17篇
  2016年   34篇
  2015年   42篇
  2014年   54篇
  2013年   170篇
  2012年   110篇
  2011年   120篇
  2010年   71篇
  2009年   72篇
  2008年   113篇
  2007年   110篇
  2006年   110篇
  2005年   122篇
  2004年   104篇
  2003年   92篇
  2002年   91篇
  2001年   10篇
  2000年   7篇
  1999年   18篇
  1998年   14篇
  1997年   22篇
  1996年   13篇
  1995年   21篇
  1994年   20篇
  1993年   14篇
  1992年   16篇
  1991年   11篇
  1990年   12篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   9篇
  1983年   9篇
  1982年   21篇
  1981年   16篇
  1980年   12篇
  1979年   6篇
  1978年   9篇
  1976年   7篇
  1975年   9篇
  1974年   9篇
  1973年   5篇
  1972年   8篇
排序方式: 共有1838条查询结果,搜索用时 31 毫秒
1.
2.
Chromatin was prepared from the buds and cotyledons of Alaskapea seedlings. The dissociated chromosomal components in thepresence of 2 M NaCl and 5 M urea were completely fractionatedinto DNA and proteins with a Bio-Gel A50 column. The proteinswere recovered by (NH4)2SO4 and further fractionated into histonesand non-histone proteins using a Bio-Rex 70(Na+) column. Thedifference in the ratios of histones to non-histone proteinsbefore and after chromatography with the Bio-Rex 70 was lessthan 10%. The histones and non-histone proteins thus preparedshowed typical protein absorption spectra. Polyacrylamide gelelectrophoresis of histones showed that the histone compositionsin buds and cotyledon were similar, but the amount of HI histoneswas a little less in cotyledons than in buds. Unlike histones,non-histone proteins fractionated by SDS-polyacrylamide gelelectrophoresis indicated distinct differences between the twotissues. Buds had more heterogeneous non-histone proteins, atleast 13 polypeptides, than cotyledons did. On the other hand,non-histone proteins of cotyledons showed less heterogeneityand lacked proteins of high molecular weight which were foundin buds. (Received May 6, 1976; )  相似文献   
3.
Polyamine oxidase of maize shoots purified 10-fold had a pH optimum of 6·3 with spermidine as substrate, and Km of 6 × 10?4 M. The enzyme was inhibited by the acridine compounds quinacrine, 6,9-diamino-2-ethoxyacridine and acriflavin, but carbonyl reagents, typical thiol inhibitors and copper-binding agents were without effect. Inhibition by quinacrine was reversed by FMN and FAD. Furthermore, about 50 % of the activity of the apoenzyme was restored by the addition of FAD, but not by FMN or riboflavin, indicating that the maize polyamine oxidase is an FAD-dependent flavoprotein.  相似文献   
4.
Changes in subcellular structures during the entire vegetativecell cycle of Chlamydomonas reinhardi Dangeard in synchronousculture were followed with an electron microscope. Giant mitochondriaof various shapes were temporarily formed, probably by fusionof smaller mitochondria, in the algal cells at an intermediatestage of the growth phase of the cell cycle. Formation of giantmitochondria was accompanied by a marked decrease in the oxygen-uptakeactivity of cells. Giant mitochondria divided into smaller formsconcurrently with a re-increase in the oxygen-uptake activityof cells. Some characteristics of changes in the structuresof chloroplast, the nucleus, the endoplasmic reticula, flagellaand dictyosomes are described. 1 This work was reported in part at the 35th Annual Meetingof the Botanical Society of Japan, October 1970. (Received October 13, 1971; )  相似文献   
5.
Carbohydrate metabolism in Al-phosphate utilizing cells of carrot[designated as IPG, Koyama et al. (1992) Plant Cell Physiol.33: 171], which grow normally in Al-phosphate medium accompaniedby citrate excretion, was investigated. The excretion of citratewas strongly related to the availability of sucrose in medium,indicating that citrate excretion was severely limited by sucrosein medium. The ratio of the amount of carbon in the excretedcitrate to the consumed sucrose, was significantly higher inIPG cells than in wild-type cells. When 50% of the sucrose inthe medium was consumed, the ratio was 0.6% for the IPG cellsand 0.2% the wild-type cells. Under these conditions, IPG cellsshowed altered citrate synthesis metabolism, which resultedin increased citrate production. Specific activity of mitochondrialcitrate synthase was higher in IPG cells than in wild-type cells,whereas the activity of cytosolic NADP-specific isocitrate dehydrogenasewas lower in IPG cells than in wild-type cells. (Received August 27, 1998; Accepted February 21, 1999)  相似文献   
6.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   
7.
Vascular endothelial cells (ECs) are continuously exposed to shear stress (SS) generated by blood flow. Such stress plays a key role in regulation of various aspects of EC function including cell proliferation and motility as well as changes in cell morphology. Vascular endothelial-protein-tyrosine phosphatase (VE-PTP) is an R3-subtype PTP that possesses multiple fibronectin type III-like domains in its extracellular region and is expressed specifically in ECs. The role of VE-PTP in EC responses to SS has remained unknown, however. Here we show that VE-PTP is diffusely localized in ECs maintained under static culture conditions, whereas it undergoes rapid accumulation at the downstream edge of the cells relative to the direction of flow in response to SS. This redistribution of VE-PTP triggered by SS was found to require its extracellular and transmembrane regions and was promoted by integrin engagement of extracellular matrix ligands. Inhibition of actin polymerization or of Cdc42, Rab5, or Arf6 activities attenuated the SS-induced redistribution of VE-PTP. VE-PTP also underwent endocytosis in the static and SS conditions. SS induced the polarized distribution of internalized VE-PTP. Such an effect was promoted by integrin engagement of fibronectin but prevented by inhibition of Cdc42 activity or of actin polymerization. In addition, depletion of VE-PTP by RNA interference in human umbilical vein ECs blocked cell elongation in the direction of flow induced by SS. Our results suggest that the polarized redistribution of VE-PTP in response to SS plays an important role in the regulation of EC function by blood flow.  相似文献   
8.
Nonalcoholic steatohepatitis (NASH) is a lipotoxic disease wherein activation of endoplasmic reticulum (ER) stress response and macrophage-mediated hepatic inflammation are key pathogenic features. However, the lipid mediators linking these two observations remain elusive. We postulated that ER stress-regulated release of pro-inflammatory extracellular vesicles (EVs) from lipotoxic hepatocytes may be this link. EVs were isolated from cell culture supernatants of hepatocytes treated with palmitate (PA) to induce lipotoxic ER stress, characterized by immunofluorescence, Western blotting, electron microscopy, and nanoparticle tracking analysis. Sphingolipids were measured by tandem mass spectrometry. EVs were employed in macrophage chemotaxis assays. PA induced significant EV release. Because PA activates ER stress, we used KO hepatocytes to demonstrate that PA-induced EV release was mediated by inositol requiring enzyme 1α (IRE1α)/X-box binding protein-1. PA-induced EVs were enriched in C16:0 ceramide in an IRE1α-dependent manner, and activated macrophage chemotaxis via formation of sphingosine-1-phosphate (S1P) from C16:0 ceramide. This chemotaxis was blocked by sphingosine kinase inhibitors and S1P receptor inhibitors. Lastly, elevated circulating EVs in experimental and human NASH demonstrated increased C16:0 ceramide. PA induces C16:0 ceramide-enriched EV release in an IRE1α-dependent manner. The ceramide metabolite, S1P, activates macrophage chemotaxis, a potential mechanism for the recruitment of macrophages to the liver under lipotoxic conditions.  相似文献   
9.
Axonal transport of peptidylglycine alpha-amidating monooxygenase (PAM) activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and reached a plateau between 48 and 72 h and then decreased. The flow rate was 100 mm/day, and the molecular mass of the active entity was 70 kDa, which was determined by gel filtration. In contrast, there was no evidence for significant retrograde axonal transport. Anterograde axonal transport of immunoreactive cholecystokinin, a carboxy-terminal-amidated putative neuropeptide, was also found. These results suggest that PAM is transported by a rapid axonal flow and may play a role as a processing enzyme during transport or in the terminals of rat sciatic nerves.  相似文献   
10.
MicroRNA miR-376c was expressed in normal intrahepatic biliary epithelial cells (HIBEpiC), but was significantly suppressed in the HuCCT1 intrahepatic cholangiocarcinoma (ICC) cell line. The biological significance of the down-regulation of miR-376c in HuCCT1 cells is unknown. We hypothesized that miR-376c could function as a tumor suppressor in these cells. To test this hypothesis, we sought the targets of miR-376c, and characterized the effect of its down-regulation on HuCCT1 cells. We performed proteomic analysis of miR-376c-overexpressing HuCCT1 cells to identify candidate targets of miR-376c, and validated these targets by 3′-UTR reporter assay. Transwell migration assays were performed to study the migratory response of HuCCT1 cells to miR-376c overexpression. Furthermore, microarrays were used to identify the signaling that were potentially involved in the miR-376c-modulated migration of HuCCT1. Finally, we assessed epigenetic changes within the potential promoter region of the miR-376c gene in these cells. Proteomic analysis and subsequent validation assays showed that growth factor receptor-bound protein 2 (GRB2) was a direct target of miR-376c. The transwell migration assay revealed that miR-376c significantly reduced epidermal growth factor (EGF)-dependent cell migration in HuCCT1 cells. DNA microarray and subsequent pathway analysis showed that interleukin 1 beta and matrix metallopeptidase 9 were possible participants in EGF-dependent migration of HuCCT1 cells. Bisulfite sequencing showed higher methylation levels of CpG sites upstream of the miR-376c gene in HuCCT1 relative to HIBEpiC cells. Combined treatment with the DNA-demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor trichostatin A significantly upregulated the expression of miR-376c in HuCCT1 cells. We revealed that epigenetic repression of miR-376c accelerated EGF-dependent cell migration through its target GRB2 in HuCCT1 cells. These findings suggest that miR-376c functions as a tumor suppressor. Since metastasis is the major cause of death in ICC, microRNA manipulation could lead to the development of novel anti-cancer therapy strategies for ICC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号