首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vascular endothelial cells (ECs) are constantly subjected to blood flow-induced shear stress and the influences of neighboring smooth muscle cells (SMCs). In the present study, a coculture flow system was developed to study the effect of shear stress on EC-SMC interactions. ECs and SMCs were separated by a porous membrane with only the EC side subjected to the flow condition. When ECs were exposed to a shear stress of 12 dynes/cm2 for 24 h, the cocultured SMCs tended to orient perpendicularly to the flow direction. This perpendicular orientation of the cocultured SMCs to flow direction was not observed when ECs were exposed to a shear stress of 2 dynes/cm2. Under the static condition, long and parallel actin bundles were observed in the central regions of the cocultured SMCs, whereas the actin filaments localized mainly at the periphery of the cocultured ECs. After 24 h of flow application, the cocultured ECs displayed very long, well-organized, parallel actin stress fibers aligned with the flow direction in the central regions of the cells. Immunostaining of platelet endothelial cell adhesion molecule-1 confirmed the elongation and alignment of the cocultured ECs with the flow direction. Coculture with SMCs under static condition induced EC gene expressions of growth-related oncogene-alpha and monocyte chemotactic protein-1, and shear stress was found to abolish these SMC-induced gene expressions. Our results suggest that shear stress may serve as a down-regulator for the pathophysiologically relevant gene expression in ECs cocultured with SMCs.  相似文献   

3.
Summary Endothelial cells (ECs) may behave as hemodynamic sensors, translating mechanical information from the blood flow into biochemical signals, which may then be transmitted to underlying smooth muscle cells. The extracellular matrix (ECM), which provides adherence and integrity for the endothelium, may serve an important signaling function in vascular diseases such as atherogenesis, which has been shown to be promoted by low and oscillating shear stresses. In this study, confluent bovine aortic ECs (BAECs) were exposed to an oscillatory shear stress or to a hydrostatic pressure of 40 mmHg for time periods of 12 to 48 h. Parallel control cultures were maintained in static condition. Although ECs exposed to hydrostatic pressure or to oscillatory flow had a polygonal morphology similar to that of control cultures, these cells possessed more numerous central stress fibers and exhibited a partial loss of peripheral bands of actin, in comparison to static cells. In EC cultures exposed to oscillatory flow or hydrostatic pressure, extracellular fibronectin (Fn) fibrils were more numerous than in static cultures. Concomitantly, a dramatic clustering ofα 5β1 Fn receptors and of the focal contact-associated proteins vinculin and talin occurred. Laminin (Ln) and collagen type IV formed a network of thin fibrils in static cultures, which condensed into thicker fibers when BAECs were exposed to oscillatory shear stress or hydrostatic pressure. The ECM-associated levels of Fn and Ln were found to be from 1.5-to 5-fold greater in cultures exposed to oscillatory shear stress or pressure for 12 and 48 h, than in static cultures. The changes in the organization and composition of ECM and focal contacts reported here suggest that ECs exposed to oscillatory shear stress or hydrostatic pressure may have different functional characteristics from cells in static culture, even though ECs in either environment exhibit a similar morphology.  相似文献   

4.
Ligation of integrins with extracellular matrix molecules induces the clustering of actin and actin-binding proteins to focal adhesions, which serves to mechanically couple the matrix with the cytoskeleton. During wound healing and development, matrix deposition and remodeling may impart additional tensile forces that modulate integrin-mediated cell functions, including cell migration and proliferation. We have utilized the ability of cells to contract floating collagen gels to determine the effect of fibronectin polymerization on mechanical tension generation by cells. Our data indicate that fibronectin polymerization promotes cell spreading in collagen gels and stimulates cell contractility by a Rho-dependent mechanism. Fibronectin-stimulated contractility was dependent on integrin ligation; however, integrin ligation by fibronectin fragments was not sufficient to induce either tension generation or cell spreading. Furthermore, treatment of cells with polyvalent RGD peptides or pre-polymerized fibronectin did not stimulate cell contractility. Fibronectin-induced contractility was blocked by agents that inhibit fibronectin polymerization, suggesting that the process of fibronectin polymerization is critical in triggering cytoskeletal tension generation. These data indicate that Rho-mediated cell contractility is regulated by the process of fibronectin polymerization and suggest a novel mechanism by which extracellular matrix fibronectin regulates cytoskeletal organization and cell function.  相似文献   

5.
Endothelial cell (EC) migration is critical in wound healing and angiogenesis. Fluid shear stress due to blood flow plays an important role in EC migration. However, the role of EC surface heparan sulfate proteoglycans (HSPGs) in EC adhesion, migration, and mechanotransduction is not well understood. Here, we investigated the effects of HSPG disruption on the adhesion, migration, and mechanotransduction of ECs cultured on fibronectin. We showed that disruption of HSPGs with heparinase decreased EC adhesion rate by 40% and adhesion strength by 33%. At the molecular level, HSPG disruption decreased stress fibers and the size of focal adhesions (FAs), increased filopodia formation, and enhanced EC migration. Under flow condition, heparinase treatment increased EC migration speed, but inhibited shear stress-induced directionality of EC migration and the recruitment of phosphorylated focal adhesion kinase in the flow direction, suggesting that HSPGs are important for sensing the direction of shear stress. In addition, decreasing cell adhesion by lowering fibronectin density enhanced EC migration under static and flow condition, but did not affect the directional migration of ECs under flow. Based on our results, we propose that HSPGs play dual roles as mechanotransducer on the EC surface: (1) HSPGs-matrix interaction on the abluminal surface regulates EC migration speed through an adhesion-dependent manner, and (2) HSPGs without binding to matrix (e.g., on the luminal surface) are involved in sensing the direction of flow through an adhesion-independent manner.  相似文献   

6.
Arterial bifurcations are common sites for development of cerebral aneurysms. Although this localization of aneurysms suggests that high shear stress (SS) and high spatial SS gradient (SSG) occurring at the bifurcations may be crucial factors for endothelial dysfunction involved in aneurysm formation, the details of the relationship between the hemodynamic environment and endothelial cell (EC) responses remain unclear. In the present study, we sought morphological responses of ECs under high-SS and high-SSG conditions using a T-shaped flow chamber. Confluent ECs were exposed to SS of 2-10 Pa with SSG of up to 34 Pa/mm for 24 and 72 h. ECs exposed to SS without spatial gradient elongated and oriented to the direction of flow at 72 h through different processes depending on the magnitude of SS. In contrast, cells did not exhibit preferred orientation and elongation under the combination of SS and SSG. Unlike cells aligned to the flow by exposure to only SS, development of actin stress fibers was not observed in ECs exposed to SS with SSG. These results indicate that SSG suppresses morphological changes of ECs in response to flow.  相似文献   

7.
Th1 and Th2 cells are functionally distinct subsets of CD4+ T lymphocytes whose tissue-specific homing to sites of inflammation is regulated in part by the differential expression of P- and E-selectin ligands and selected chemokine receptors. Here we investigated the expression and function of beta 1 integrins in Th1 and Th2 cells polarized in vitro. Th1 lymphocytes adhere transiently to the extracellular matrix ligands laminin 1 and fibronectin in response to chemokines such as RANTES and stromal cell-derived factor-1, and this process is paralleled by the activation of the Rac1 GTPase and by a rapid burst of actin polymerization. Selective inhibitors of phosphoinositide-3 kinase prevent efficiently all of the above processes, whereas the protein kinase C inhibitor bisindolylmaleimide prevents chemokine-induced adhesion without affecting Rac1 activation and actin polymerization. Notably, chemokine-induced adhesion to beta 1 integrin ligands is markedly reduced in Th2 cells. Such a defect cannot be explained by a reduced sensitivity to chemokine stimulation in this T cell subset, nor by a defective activation of the signaling cascade involving phosphoinositide-3 kinase, Rac1, and actin turnover, as all these processes are activated at comparable levels by chemokines in the two subsets. We propose that reduced beta 1 integrin-mediated adhesion in Th2 cells may restrain their ability to invade and/or reside in sites of chronic inflammation, which are characterized by thickening of basement membranes and extensive fibrosis, requiring efficient interaction with organized extracellular matrices.  相似文献   

8.
Mechanotransduction in endothelial cell migration   总被引:3,自引:0,他引:3  
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. EC migration can be regulated by different mechanisms such as chemotaxis, haptotaxis, and mechanotaxis. This review will focus on fluid shear stress-induced mechanotransduction during EC migration. EC migration and mechanotransduction can be modulated by cytoskeleton, cell surface receptors such as integrins and proteoglycans, the chemical and physical properties of extracellular matrix (ECM) and cell-cell adhesions. The shear stress applied on the luminal surface of ECs can be sensed by cell membrane and associated receptor and transmitted throughout the cell to cell-ECM adhesions and cell-cell adhesions. As a result, shear stress induces directional migration of ECs by promoting lamellipodial protrusion and the formation of focal adhesions (FAs) at the front in the flow direction and the disassembly of FAs at the rear. Persistent EC migration in the flow direction can be driven by polarized activation of signaling molecules and the positive feedback loops constituted by Rho GTPases, cytoskeleton, and FAs at the leading edge. Furthermore, shear stress-induced EC migration can overcome the haptotaxis of ECs. Given the hemodynamic environment of the vascular system, mechanotransduction during EC migration has a significant impact on vascular development, angiogenesis, and vascular wound healing.  相似文献   

9.
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.  相似文献   

10.
Mechanical cues from the microenvironments play a regulating role in many physiological and pathological processes, such as stem cell differentiation and cancer cell metastasis. Experiments showed that cells adhered on a compliant substrate may change orientation with an externally applied strain in the substrate. By accounting for actin polymerization, actin retrograde flow, and integrin binding dynamics, here we develop a mechanism-based tensegrity model to study the orientations of polarized cells on a compliant substrate under biaxial stretches. We show that the cell can actively regulate its mechanical state by generating different traction force levels along its polarized direction. Under static or ultralow-frequency cyclic stretches, stretching a softer substrate leads to a higher increase in the traction force and induces a narrower distribution of cell alignment. Compared to static loadings, high-frequency cyclic loadings have a more significant influence on cell reorientation on a stiff substrate. In addition, the width of the cellular angular distribution scales inversely with the stretch amplitude under both static and cyclic stretches. Our results are in agreement with a wide range of experimental observations, and provide fundamental insights into the functioning of cellular mechanosensing systems.  相似文献   

11.
Paxillin, a structural and signaling scaffold molecule in focal adhesions (FAs), is considered to be important in intracellular signaling transduction and the cell shape changes in response to cyclic stretching. However, the detailed role of paxillin in stretch-induced morphological changes of endothelial cells (ECs) has not fully determined until date. In this study, in order to understand the role of paxillin in the orientation of ECs exposed to cyclic stretching, we examined the time course of changes in the shape and distribution of FA proteins of paxillin knockdown ECs. Non-treated ECs subjected to 20% cyclic stretching at 0.5Hz oriented perpendicularly to the direction of stretching after 10min of exposure. On the other hand, the orientation of paxillin knockdown ECs was abolished at 10min, but it was observed after 60min of cyclic stretching exposure. Immunofluorescent microscopy revealed that accumulation and redistribution of FA proteins, including focal adhesion kinase (FAK) and integrin β1, were observed at 10min of exposure to cyclic stretching in non-treated ECs. The accumulation of FAK and integrin β1 was not prominent in paxillin knockdown ECs under static conditions and after 10min of exposure to cyclic stretching. However, we found that accumulation of FA proteins in paxillin knockdown ECs at 30 and 60min was similar to that in non-transfected ECs. Because paxillin is an adaptor protein offering binding sites for FAK and integrin β1, which are critical molecules for the early signaling events of focal adhesion formation in ECs, these results suggest that paxillin is required for the early phase of EC orientation in response to cyclic stretching by scaffolding for accumulation of FA proteins.  相似文献   

12.
To investigate the effect of extracellular matrix molecules in the megakaryocytic lineage, we studied the role of integrin engagement in the proliferation and differentiation of human erythroleukemia (HEL) cells. HEL cells grew in suspension, but their adherence depended upon the presence of matrix proteins or protein kinase C signaling. Adherence by itself did not trigger commitment of these cells but accelerated phorbol 12-myristate 13-acetate-induced differentiation. HEL cells adhered to fibronectin mainly through alpha5beta1, and this receptor acted synergetically with alpha4beta1. Integrin engagement induced cell growth arrest through mitogen-activated protein kinase inactivation. Such down-regulation of the mitogen-activated protein kinase pathway by integrin engagement was suggested as a megakaryocytic-platelet lineage specificity. This signaling was not restricted to a peculiar integrin but was proposed as a general mechanism in these cells.  相似文献   

13.
Vascular endothelial cells (ECs) in vivo are subject to different flow conditions due to the variation in vessel geometry. The aim of this study is to elucidate the effects of different flow conditions on EC monolayer migration into a mechanically denuded zone and their underlying mechanisms. Both laminar and disturbed flows significantly enhanced EC migration. EC migration speed was the fastest under laminar flow, which preferentially promoted directional EC migration from the upstream side of the wounded monolayer. C3 exoenzyme (a Rho inhibitor) inhibited EC migration under static and flow conditions, and markedly reduced the effects of flow on EC migration. These results indicate that flow promotes EC migration through the Rho signaling pathway. Genistein (a tyrosine kinase inhibitor) selectively retarded EC migration under disturbed flow, suggesting that tyrosine phosphorylation may play a role in EC migration under disturbed flow. This study has demonstrated that different flow patterns differentially affect EC monolayer migration into the denuded zone involving multiple mechanisms.  相似文献   

14.
Von Willebrand factor (vWF) is a constitutive and specific component of endothelial cell (EC) matrix. In this paper we show that, in vitro, vWF can induce EC adhesion and promote organization of microfilaments and adhesion plaques. In contrast, human vascular smooth muscle cells and MG63 osteosarcoma cells did not adhere and spread on vWF. Using antibodies to the beta chains of fibronectin (beta 1) and vitronectin (beta 3) receptors it was found that ECs adherent to vWF show clustering of both receptors. The beta 1 receptor antibodies are arranged along stress fibers at sites of extracellular matrix contact while the beta 3 receptor antibodies were sharply confined at adhesion plaques. ECs release and organize endogenous fibronectin early during adhesion to vWF. Upon blocking protein synthesis and secretion, ECs can equally adhere and spread on vWF but, while the beta 3 receptors are regularly organized, the beta 1 receptors remain diffuse. This suggests that the organization of the beta 1 receptors depend on the release of fibronectin and/or other matrix proteins operated by the same cell. Antibodies to the beta 3 receptors fully block EC adhesion to vWF and detach ECs seeded on this substratum. In contrast, antibodies to the beta 1 receptors are poorly active. Overall these results fit with an accessory role of beta 1 receptors and indicate a leading role for the beta 3 receptors in EC interaction with vWF. To identify the EC binding domain on vWF we used monoclonal antibodies produced against a peptide representing the residues Glu1737-Ser1750 of the mature vWF and thought to be important in mediating its binding to the platelet receptor glycoprotein IIb-IIIa. We found that the antibody that recognizes the residues 1,744-1,746, containing the Arg-Gly-Asp sequence, completely inhibit EC adhesion to vWF whereas a second antibody recognizing the adjacent residues 1,740-1,742 (Arg-Gly-Asp-free) is inactive. Both antibodies do not interfere with EC adhesion to vitronectin. This defines the molecular domain on vWF that is specifically recognized by ECs and reaffirms the direct role of the Arg-Gly-Asp sequence as the integrin receptor recognition site also in the vWF molecule.  相似文献   

15.
Case LB  Waterman CM 《PloS one》2011,6(11):e26631
At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.  相似文献   

16.
We aimed at elucidating the molecular basis of c-fos promoter activation in vascular endothelial cells (ECs) in response to shear stress, with emphases on Rho family GTPases (Rho, Cdc42, and Rac) and intracellular calcium. Dominant-negative and constitutively activated mutants of these GTPases were used to block the action of upstream signals and to activate the downstream pathways, respectively. The role of intracellular calcium was assessed with intracellular calcium chelators. Only Rho, but not Cdc42 or Rac, is involved in the shear stress induction of c-fos. This Rho-mediated shear-induction of c-fos is dependent on intracellular calcium, but not on the Rho effector p160ROCK or actin filaments. While the inhibition of p160ROCK and its ensuing disruption of actin filaments decreased the basal c-fos activity in static ECs (no flow), it did not affect the shear-inductive effect. The calcium chelator BAPTA-AM inhibits the shear-induction, as well as the static level, of c-fos activity.  相似文献   

17.
Engagement of the costimulatory molecule CD28 is an important step in the optimal activation of T cells. Nevertheless, the specific role of CD28 in the formation of the immunological synapse and cytoskeletal changes that occur upon TCR/CD3 complex engagement is still poorly understood. Using Ab-coated surfaces, we show that CD28 engagement in the absence of any other signal induced the formation of cytoplasmic elongations enriched in filamentous actin (F-actin), in this work called filopodia or microspikes. Such structures were specific for engagement of CD28 on mAb-coated surfaces because they could not be observed in surfaces coated with either poly(L-lysine) or anti-CD3 mAb. The signaling pathway coupling CD28 to cytoskeletal rearrangements required Src-related kinase activity and promoted Vav phosphorylation and Cdc42 activation independently of the zeta-chain-associated kinase (ZAP-70). CD28-induced filopodia required Cdc42 GTPase activity, but not the related Rho GTPase Rac1. Moreover, Cdc42 colocalized to areas of increased F-actin. Our results support a specific role for the activation of the small Rho GTPase Cdc42 in the actin reorganization mediated by CD28 in human T cells.  相似文献   

18.
Fluorescence cytochemistry using en face preparations of rat vascular endothelial cells (ECs) revealed the localization of actin, fibronectin (FN) and fibronectin receptor (FNR) along not only central stress fibers (SFs) but also the cell margins. Electron microscopy showed very close proximity between the topographical distribution of intracellular microfilament bundles and that of subendothelial FN in the EC margins. Therefore, these basal and marginal actin cables may be comparable to the well-established central SFs present in ECs. Formation of the central SFs was induced in ECs or mesothelial cells in response to tension, by which their cellular integrity seems to be effectively maintained. However, even when central SF formation was inhibited by cytochalasin D, the ECs with marginal SFs showed high resistance to mechanical tension, whereas mesenteric mesothelial cells having no such fibers easily lost their integrity. Thus, together with central SFs, the marginal SFs characteristic of rat vascular ECs may play an essential role in strengthening cell-matrix adhesion.  相似文献   

19.
Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the first 12 min; activity was minimal in the upstream direction. After 12 min, peripheral edge extension subsided. Confluent cell monolayers that were exposed to shear stress exhibited only subtle increases in edge fluctuations after flow onset. Addition of cytochalasin D to disrupt actin polymerization served to suppress the magnitude of flow-mediated actin remodeling in both subconfluent confluent EC monolayers. Interestingly, when subconfluent ECs were exposed to two sequential flow step increases (1 dyn/cm2 followed by 15 dyn/cm2 12 min later), actin-mediated edge activity was not additionally increased after the second flow step. Thus, repeated flow increases served to desensitize mechanosensitive structural dynamics in the actin cytoskeleton.  相似文献   

20.
The WASP (Wiskott Aldrich Syndrome Protein) Interacting Protein, WIP, regulates actin polymerization and the formation of actin-rich structures such as filopodia and lamellipodia, each of which is involved in cellular adhesion, spreading and migration. To define the role for WIP in these activities, we analysed cell adhesion and spreading as well as the redistribution of polymerised actin and paxillin that occurred when fibroblasts were plated onto different substrata. We compared the effect of WIP overexpression (gain of function) with that of WIP deficiency (loss of function) on these parameters. WIP-overexpression delayed cellular adhesion and spreading, an effect that could be compensated for by exposure to Y-27632, a well characterized ROCK (Rho kinase) inhibitor. WIP overexpression augmented the phosphorylation of Erk and JNK induced by binding to fibronectin, suggesting that WIP participates in signal transduction pathways initiated by integrin engagement. Conversely, WIP deficiency accelerated fibroblast adhesion to plastic and led to the formation of enlarged focal adhesions. The influence of WIP on fibroblast migration was measured by scratch assay. WIP-overexpression reduced migration while WIP-deficiency increased it, suggesting that WIP acts as a negative regulator of fibroblast migration. Together, these findings suggest a novel role for WIP in fibroblast adhesion, spreading and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号