首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有59条查询结果,搜索用时 46 毫秒
1.
Myzostoma cirriferum feeds by diverting food particles carried by the ambulacral grooves of its comatulid host Antedon bifida. When searching for food, the myzostome uses its protrusible introvert to fulfil two major functions: sensory perception and the capture of food particles. The digestive system is composed of four parts, viz. a pharynx, that is contained within the introvert, a stomach, a series of paired caeca and an intestine that lie in the myzostome's trunk. The pharynx is supplied with a thick muscle which, thanks to peristaltic movements, carries food particles from the mouth to the stomach. Both stomach and caecal cells are able to absorb dissolved nutriments and to store lipids, whereas intestinal cells are only capable of absorption. Due to the beating of their cilia, stomach cells also carry food particles into the caecal lumen, where they are subjected to endocytosis and intracellular digestion by caecal cells. Undigested food fragments eventually gather in a very large, apical vacuole, and the cell apices containing vacuoles are eliminated into the caecal lumen by an apocrinal process. Detached cell apices reach the stomach, where they are embedded in a matrix, together forming a spindle-shaped faecal mass that is expelled through the postero-ventral anus. The observed digestive process—entailing the regular elimination of the apical part of the caecal digestive cells—appears to be unique among the Spiralia.  相似文献   
2.
Coral Reefs - Due to the dearth of molecular markers variable enough to distinguish species of black corals, species delimitation in Antipatharia is still mainly based on morphological traits. One...  相似文献   
3.
4.

Key message

We developed an efficient protocol for chromosome scattering in Spathiphyllum microspores. The effects of plant material, developmental age, genotype and antimicrotubular toxin type, exposure and concentration were evaluated.

Abstract

Asymmetric hybridization through microprotoplast-mediated chromosome transfer (MMCT) is a known method for overcoming sexual breeding barriers between distantly related plant species. To obtain microprotoplasts, it is necessary to induce mass micronucleation either in somatic or gametic cells. We have tested the efficiency for micronuclei induction of five mitosis inhibitors, amiprophos-methyl (APM), butamiphos (BUT), chlorpropham (CIPC), oryzalin (ORY) and propyzamide (PRO), on developing microspores of diploid Spathiphyllum wallisii Regel. Besides the used toxins, also the effect of their concentrations and incubation period as well as plant genotypes and material was tested. We observed micronuclei (MNi) in pollen mother cells, dyads and tetrads as well as other abnormalities such as ball metaphases and chromosome bridges. The flower position on the spadix and the type of starting material (dissected anthers vs. complete spadices) did not significantly influence micronucleation frequencies. The highest micronucleation index of 86 % was obtained in microspores treated with 10 μM ORY during 72 h. All six genotypes tested formed micronuclei after this particular treatment, although the efficiency varied between cultivars. Next to ORY, CIPC was also a very efficient MNi inducer. The average number of MNi found in micronucleated cells varied between 1.67–6.44 for CIPC and 0.83–5.50 for ORY. The maximal number of MNi observed was 12 for CIPC and 9 for ORY. Our results demonstrate that CIPC and ORY can be applied for mass micronucleation on developing microspores of S. wallisii as a first step of MMCT in aroid interspecific or intergeneric breeding.  相似文献   
5.
Neurochemical Research - Temporal lobe epilepsy (TLE) is an acquired form of focal epilepsy, in which patients not only suffer from unprovoked, devastating seizures, but also from severe...  相似文献   
6.
The microbiota of the body wall lesions of the echinoid Tripneustes gratilla, initiated by the grazing action of the parasitic gastropod Vexilla vexillum, was investigated with a pluridisciplinary approach. Parasitised sea urchins showed body wall lesions strongly infected by bacteria that progressed through the test and reached the coelomic cavity after ca. 1 mo. We report here on the bacterial community observed in lesions of echinoids collected in situ and on the bacteria that successively appeared during laboratory experiments. Two Alphaproteobacteria, a CFB (Cytophaga-Flavobacterium-Bacteroides) bacterium, 3 Vibrio species and Exiguobacterium aestuarii were identified in the field-collected lesions by 16S rDNA sequencing. The last 4 bacteria were cultured and each induced the disease when inoculated on scalpel-made wounds, with 100% of the individuals infected within 2 d. Scalpel-induced scarifications tended to heal within 3 wk, while gastropod-induced lesions evolved into disease, suggesting a role of Vexilla vexillum in the development of the infection. Denaturing gradient gel electrophoresis (DGGE) and sequencing suggest that (1) bacteria associated with healthy integument were not present in the lesions and were thus not responsible for their infection, (2) Alphaproteobacteria with close phylogenetic affiliation with other bacteria involved in several diseases affecting marine invertebrates were present, and (3) these Alphaproteobacteria were present from the beginning of the infection and appeared earlier in the infection than other bacteria such as CFB bacteria.  相似文献   
7.
8.
High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.  相似文献   
9.
Myzostomids are minute, soft-bodied, marine worms associated with echinoderms since the Carboniferous. Due to their long history as host-specific symbionts, they have acquired a highly derived body plan that obscures their phylogenetic affinities to other metazoans. Because certain organs are serially arranged a closer relationship between polychaetes and myzostomids has repeatedly been discussion. We presented here a review on the ultrastructure of myzostomids with the most recent analyses that concern their phylogenetic position. The ultrastructure of the integument, digestive system, excretory system and nervous system are summarized. Unpublished information on the gametogenesis and reproductive systems of myzostomids are also exposed with a view on their reproductive process.  相似文献   
10.
A new myzostome species, described here as Myzostoma fuscomaculatum n. sp. was collected on Tropiometra carinata in False Bay (South Africa), during a survey of symbionts associated with comatulid crinoid species. M. fuscomaculatum n. sp. occurred only on T. carinata and not on the more common crinoid, Comanthus wahlbergi. It infested 61.7% of the 120 host specimens collected, of which 64.9% (48 specimens) hosted more than one individual (maximum of 32). M. fuscomaculatum n. sp. was always located on the host’s arms and pinnules and was cryptically coloured, closely matching the colour pattern of the host. This is the first record of myzostomes from the cool temperate waters of South Africa’s Atlantic coast. The new species is morphologically close to M. gopalai Subramaniam, 1938, collected on T. encrinus in Madras Harbour. M. fuscomaculatum n. sp. differs from M. gopalai in lacking marginal cirri at the adult stage, the presence of three pairs of digestive diverticula, by the position of its lateral organs and by the shape of the manubrium. Molecular phylogenetic analyses based on 18S and 16S rDNA placed M. fuscomaculatum n. sp. into a clade including Hypomyzostoma, Myzostoma and Mesomyzostoma species. Handling editor: K. Martens Déborah Lanterbecq and Tessa Hempson contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号