首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有31条查询结果,搜索用时 218 毫秒
1.
Calcium fluxes across the sarcoplasmic reticulum membrane are regulated by phosphorylation of a 27,000-dalton membrane-bound protein termed phospholamban. Phospholamban is phosphorylated by three different protein kinases (cAMP-dependent, Ca2+.CAM-dependent and Ca2+.phospholipid dependent) at apparently distinct sites. Phosphorylation by each of the protein kinases increases the rates of active calcium transport by sarcoplasmic reticulum vesicles. The stimulatory effects of protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase activity. The phosphoprotein phosphatase can dephosphorylate both the cAMP-dependent and the Ca2+.CAM-dependent sites of phospholamban. Phosphorylation of phospholamban also occurs in situ, in perfused beating hearts, during the peak of the inotropic response to beta-adrenergic stimulation. Reversal of the stimulatory effects is associated with dephosphorylation of phospholamban. Thus, in vivo and in vitro studies suggest that phospholamban is a regulator for the calcium pump in cardiac sarcoplasmic reticulum. The degree of phospholamban phosphorylation determined by the interaction of specific protein kinases and phosphatases may represent an important control for sarcoplasmic reticulum function and, thus, for the contraction-relaxation cycle in the myocardium. In this review, we summarize recent evidence on physical and structural properties of phospholamban, the proposed structural molecular models for this protein, and the significance of its regulatory role both in vitro and in situ.  相似文献   
2.
Stress contributes to the development of chronic degenerative diseases in primates. Allostatic load is an estimate of stress-induced physiological dysregulation based on an index of multiple biomarkers. It has been applied to humans to measure effects of stress and predict health outcomes. Assessing allostatic load in nonhuman primates may aid in understanding factors promoting compromised health and longevity in captive populations, as well as risk assessment among wild populations following human activities. We applied an allostatic load index to gorillas housed at the Columbus Zoo and Aquarium (N = 27, 1956–2014) using data from medical records and biomarkers from banked serum. We estimated allostatic load using seven biomarkers (albumin, cortisol, corticotropin-releasing hormone, dehydroepiandrosterone sulfate, glucose, interleukin-6, and tumor necrosis factor alpha) and then examined this index for associations with age, sex, number of stressful events, parturition, physiological health measures, and age at death. Stressful events were defined as agonistic interactions with wounding, translocations, and anesthetizations. Allostatic load positively associated with age and total number of lifetime stressful events. Allostatic load was significantly higher in females than in males. Allostatic load was not associated with number of pregnancies and was not different between nulliparous and parous females. Allostatic load associated positively with serum creatinine and triglyceride levels, showed a nonsignificant negative association with cholesterol, and did not associate significantly with age at death. These results demonstrate the potential utility of allostatic load for exploring long-term stress and health risks, as well as for evaluating environmental stressors for gorillas and other nonhuman primates in captivity and in the wild.  相似文献   
3.
Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance.  相似文献   
4.
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.  相似文献   
5.
6.
The calcium transport mechanism of cardiac sarcoplasmic reticulum (SR) is regulated by a phosphoregulatory mechanism involving the phosphorylation-dephosphorylation of an integral membrane component, termed phospholamban. Phospholamban, a 27,000 Da proteolipid, contains phosphorylation sites for three independent protein kinases: 1) cAMP-dependent, 2) Ca2+-calmodulin-dependent, and 3) Ca2+-phospholipid-dependent. Phosphorylation of phospholamban by any one of these kinases is associated with stimulation of the calcium transport rates in isolated SR vesicles. Dephosphorylation of phosphorylated phospholamban results in the reversal of the stimulatory effects produced by the protein kinases. Studies conducted on perfused hearts have shown that during exposure to beta-adrenergic agents, a good correlation exists between the in situ phosphorylation of phospholamban and the relaxation of the left ventricle. Phosphorylation of phospholamban in situ is also associated with stimulation of calcium transport rates by cardiac SR, similar to in vitro findings. Removal of beta-adrenergic agents results in the reversal of the inotropic response and this is associated with dephosphorylation of phospholamban. These findings indicate that a phospho-regulatory mechanism involving phospholamban may provide at least one of the controls for regulation of the contractile properties of the myocardium.  相似文献   
7.
8.
The increase in Ca(2+) sensitivity of isometric force development along with sarcomere length (SL) is considered as the basis of the Frank-Starling law of the heart, possibly involving the regulation of cross-bridge turnover kinetics. Therefore, the Ca(2+) dependencies of isometric force production and of the cross-bridge-sensitive rate constant of force redevelopment (k(tr)) were determined at different SLs (1.9 and 2.3 mum) in isolated human, murine, and porcine permeabilized cardiomyocytes. k(tr) was also determined in the presence of 10 mM inorganic phosphate (P(i)), which interfered with the force-generating cross-bridge transitions. The increases in Ca(2+) sensitivities of force with SL were very similar in human, murine, and porcine cardiomyocytes (DeltapCa(50): approximately 0.11). k(tr) was higher (P < 0.05) in mice than in humans or pigs at all Ca(2+) concentrations ([Ca(2+)]) [maximum k(tr) (k(tr,max)) at a SL of 1.9 mum and pCa 4.75: 1.33 +/- 0.11, 7.44 +/- 0.15, and 1.02 +/- 0.05 s(-1), in humans, mice, and pigs, respectively] but k(tr) did not depend on SL in any species. Moreover, when the k(tr) values for each species were expressed relative to their respective maxima, similar Ca(2+) dependencies were obtained. Ten millimolar P(i) decreased force to approximately 60-65% and left DeltapCa(50) unaltered in all three species. P(i) increased k(tr,max) by a factor of approximately 1.6 in humans and pigs and by a factor of approximately 3 in mice, independent of SL. In conclusion, species differences exert a major influence on k(tr), but SL does not appear to modulate the cross-bridge turnover rates in human, murine, and porcine hearts.  相似文献   
9.
Our previous study showed that arteriolar tone is enhanced in Type 2 diabetes mellitus (T2-DM) due to an increased level of constrictor prostaglandins. We hypothesized that, in mice with T2-DM, hydrogen peroxide (H(2)O(2)) is involved in the increased synthesis of constrictor prostaglandins, hence enhanced basal tone in skeletal muscle arterioles. Isolated, pressurized gracilis muscle arterioles ( approximately 100 microm in diameter) of mice with T2-DM (C57BL/KsJ-db(-)/db(-)) exhibited greater basal tone to increases in intraluminal pressure (20-120 mmHg) than that of control vessels (at 80 mmHg, control: 25 +/- 5%; db/db: 34 +/- 4%, P < 0.05), which was reduced back to control level by catalase (db/db: 24 +/- 4%). Correspondingly, in carotid arteries of db/db mice, the level of dichlorofluorescein-detectable and catalase-sensitive H(2)O(2) was significantly greater. In control arterioles, exogenous H(2)O(2) (0.1-100 micromol/l) elicited dilations (maximum, 58 +/- 10%), whereas in arterioles of db/db mice H(2)O(2) caused constrictions (-28 +/- 8%), which were converted to dilations (maximum, 16 +/- 5%) by the thromboxane A(2)/prostaglandin H(2) (TP) receptor antagonist SQ-29548. In addition, arteriolar constrictions in response to the TP receptor agonist U-46619 were not different between the two groups of vessels. Endothelium denudation did not significantly affect basal tone and H(2)O(2)-induced arteriolar responses in either control or db/db mice. Also, in arterioles of db/db mice, but not in controls, 3-nitrotyrosine staining was detected in the endothelial layer of vessels. Thus we propose that, in mice with T2-DM, arteriolar production of H(2)O(2) is enhanced, which leads to increased synthesis of the constrictor prostaglandins thromboxane A(2)/prostaglandin H(2) in the smooth muscle cells, which enhance basal arteriolar tone. These alterations may contribute to disturbed regulation of skeletal muscle blood flow in Type 2 diabetes mellitus.  相似文献   
10.
PTEN, a phosphoinositide-3-phosphatase, serves dual roles as a tumor suppressor and regulator of cellular anabolic/catabolic metabolism. Adaptation of a redox-sensitive cysteinyl thiol in PTEN for signal transduction by hydrogen peroxide may have superimposed a vulnerability to other mediators of oxidative stress and inflammation, especially reactive carbonyl species, which are commonly occurring by-products of arachidonic acid peroxidation. Using MCF7 and HEK-293 cells, we report that several reactive aldehydes and ketones, e.g. electrophilic α,β-enals (acrolein, 4-hydroxy-2-nonenal) and α,β-enones (prostaglandin A(2), Δ12-prostaglandin J(2) and 15-deoxy-Δ-12,14-prostaglandin J(2)) covalently modify and inactivate cellular PTEN, with ensuing activation of PKB/Akt kinase; phosphorylation of Akt substrates; increased cell proliferation; and increased nuclear β-catenin signaling. Alkylation of PTEN by α,β-enals/enones and interference with its restraint of cellular PKB/Akt signaling may accentuate hyperplastic and neoplastic disorders associated with chronic inflammation, oxidative stress, or aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号