首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2012年   1篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   3篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The genetic composition of a population reflects several aspects of the organism and its environment. The Icelandic Arctic fox population exceeds 8000 individuals and is comprised of both coastal and inland foxes. Several factors may affect within-population movement and subsequent genetic population structure. A narrow isthmus and sheep-proof fences may prevent movement between the north-western and central part and glacial rivers may reduce movement between the eastern and central part of Iceland. Moreover, population density and habitat characteristics can influence movement behaviour further. Here, we investigate the genetic structure in the Icelandic Arctic fox population ( n  = 108) using 10 microsatellite loci. Despite large glacial rivers, we found low divergence between the central and eastern part, suggesting extensive movement between these areas. However, both model- and frequency-based analyses suggest that the north-western part is genetically differentiated from the rest of Iceland (FST = 0.04, DS = 0.094), corresponding to 100–200 generations of complete isolation. This suggests that the fences cannot be the sole cause of divergence. Rather, the isthmus causes limited movement between the regions, implying that protection in the Hornstrandir Nature Reserve has a minimal impact on Arctic fox population size in the rest of Iceland.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 18–26.  相似文献   
2.
3.
1. The aim of this study was to estimate patchiness in biomass and in the internal nutrient status of benthic algae on hard substrata (epilithon) in Lake Erken, Sweden, over different levels of distance, depth and time. Knowledge of the sources and scale of patchiness should enable more precise estimation of epilithic biomass and nutrient status for the entire lake. We focused on the horizontal scale, about which little is known. 2. We sampled epilithon by SCUBA diving and used a hierarchical sampling design with different horizontal scales (cm, dm, 10 m, km) which were nested in two temporal scales (within and between seasons). We also compared two successive years and three sampling depths (0, 1 and 4 m). Biomass was measured as particulate carbon and chlorophyll a (Chl a) and internal nutrient status as carbon : nitrogen : phosphorus (C : N : P) ratios and as specific alkaline phosphatase activity (APA). 3. Horizontal variation accounted for 60–80 and 7–70% of the total variation in biomass and in nutrient status, respectively, at all depths and during both years. Both small and large scales accounted for significant variation. We also found variation with time and depth. Biomass increased in autumn after a summer minimum, and the within‐season variation was very high. The lowest biomass was found at 0 m depth. Both N and P limitation occurred, being higher in 1996 than in 1997 and decreased with depth. 4. As a consequence, any sampling design must address variation with distance, depth and time when estimating biomass or nutrient limitation of benthic algae for an entire lake. Based on this analysis, we calculated an optimal sampling design for detecting change in the epilithic biomass of Lake Erken between different sampling days. It is important to repeat the sampling as often as possible, but also the large scales (10 m and km) and the dm scale should be replicated. Using our calculations as an example, and after a pilot study, an optimal sampling design can be computed for various objectives and for any lake. 5. Short‐term impact of the wind, light and nutrient limitation, and grazing, might be important in regulating the biomass and nutrient status of epilithic algae in Lake Erken. Patchiness in the nutrient status of algae was not coupled to the patchiness of biomass, indicating that internal nutrients and biomass were regulated by different factors.  相似文献   
4.
Sugar beet leaf homogenate contains Mg2+-stimulated ATPase activity with the highest specific activity in the 25,000–30,000 ×g-fraction. This fraction also has (Na++ K+)-activated ATPase activity. Both activities have two pH optima, one stable at pH 7.9 and one variable at lower pH. When optimal conditions of Na+ and K+ were tested with 64 combinations of these ions, at least two mountains of activity were revealed. The (Na++ K+)-ATPase had a high specificity for ATP. It had lost about 50% of its original activity after 56 days of storage at ?85°C. The activity drop was most pronounced at high ionic concentrations in the test medium. The (Na++ K+)-ATPase shows four peaks of activity when tested at constant ionic strength. The idea is put forward that the four peaks reflect two ATPases, one in the tonoplast and one in the plasmalemma, which undergo conformational changes in relation to the ionic milieu.  相似文献   
5.
6.
1. The ontogenetic development of anadromous salmonids includes downstream emigration of immature individuals from freshwater towards the marine environment. Although this migration of juvenile salmonids (smolts) may be associated with severe mortalities, only limited attention has been paid to the spatial positioning of smolts in small streams. 2. Using a novel approach, this study examined the vertical and horizontal positioning of brown trout and Atlantic salmon smolts while performing downstream migration in a small lowland stream. 3. Pre‐smolts of indigenous and hatchery‐reared (F1) brown trout (Salmo trutta), and two different populations of Atlantic salmon (S. salar), were tagged with passive integrated transponder (PIT) tags and subsequently released upstream of an antenna array consisting of five circular swim‐through PIT antennas. Antennas were positioned in order to determine whether the migrating smolts were bottom or surface oriented, and if they were oriented towards the mid‐channel or the stream bank. 4. During the smolt emigration period, data describing both the detection of the migrating fish and the amount of water passing through the antennas were collected. This was accomplished in order to determine if the fish were performing active positioning behaviour independently of the vertical and horizontal discharge distributions in the stream. 5. The results showed that the smolts migrated in a non‐random spatial pattern independently of the stream discharge distributions. Vertically, the indigenous brown trout and the Atlantic salmon demonstrated a preference for the bottom orientated positions. In contrast, the distribution of the F1 brown trout was not different from the discharge distribution. The latter observation suggests random vertical positioning, which may be indicative of inferior migratory performance. Horizontally, all tested smolt populations strongly preferred the mid‐channel positions. 6. The discharge‐corrected preferences for certain spatial positions suggest that smolt emigration is not entirely a matter of passive displacement in lowland streams. 7. Anthropogenically altered channels may inhibit or delay downstream emigration of smolts resulting in increased mortalities. Given that the smolts in this study actively selected spatial positions in the mid‐channel and near the bottom, it is suggested that deep, mid‐channel furrows may be used to help guide migrating smolts past adverse habitats in lowland streams.  相似文献   
7.
Soil microbial biomass in arctic heaths has been shown to be largely unaffected by treatments simulating climate change with temperature, nutrient and light manipulations. Here, we demonstrate that more than 10 years is needed for development of significant responses, and that changes in microbial biomass are accompanied with strong alterations in microbial community composition. In contrast to slight or nonsignificant responses after 5, 6 and 10 treatment years, 15 years of inorganic NPK fertilizer addition to a subarctic heath had strong effects on the microbial community and, as observed for the first time, warming and shading also led to significant responses, often in opposite direction to the fertilization responses. The effects were clearer in the top 5 cm soil than at the 5–10 cm depth. Fertilization increased microbial biomass C and more than doubled microbial biomass P compared to the non-fertilized plots. However, it only increased microbial biomass N at the 5–10 cm depth. Fertilization increased fungal biomass and the relative abundance of phospholipid fatty acid (PLFA) markers of gram-positive bacteria. Warming and shading decreased the relative abundance of fungal PLFAs, and shading also altered the composition of the bacterial community. The long time lag in responses may be associated with indirect effects of the gradual changes in the plant biomass and community composition. The contrasting responses to warming and fertilization treatments show that results from fertilizer addition may not be similar to the effects of increased nutrient mineralization and availability following climatic warming.  相似文献   
8.
While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially increased frequency of freeze–thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R2-values ranging from 0.81 to 0.85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold-season photosynthesis partly balanced the cold-season respiratory carbon losses and can be significant for the annual cycle of carbon. Still, during the full year the ecosystem was a significant net source of 120 ± 12 g C m−2 to the atmosphere. Neither respiration nor photosynthetic rates were much affected by the extra FT cycles, although the mean rate of net ecosystem loss decreased slightly, but significantly, in May. The results suggest only a small response of net carbon fluxes to increased frequency of FT cycles in this ecosystem.  相似文献   
9.
DEVELOPMENTAL STABILITY, DISEASE AND MEDICINE   总被引:10,自引:0,他引:10  
Developmental stability reflects the ability of a genotype to undergo stable development of a phenotype under given environmental conditions. Deviations from developmental stability arise from the disruptive effects of a wide range of environmental and genetic stresses, and such deviations are usually measured in terms of fluctuating asymmetry and phenodeviants. Fluctuating asymmetry is the most sensitive indicator of the ability to cope with stresses during ontogeny. There is considerable evidence that developmental stability, and especially fluctuating asymmetry, is a useful measure of phenotypic and genetic quality, because it covaries negatively with performance in multiple fitness domains in many species, including humans. It is proposed that developmental stability is an important marker of human health. Our goal is to initiate formally the integration of the sciences of evolutionary biology, developmental biology and medicine. We believe that this integrative framework provides a significant addition to the growing field of Darwinian medicine. The literature linking developmental stability and disease in humans is reviewed. Recent biological theoretical treatments pertaining to developmental stability are applied to a range of human health issues such as genetic diseases, ageing and survival, subfertility, abortion, child maltreatment by parents, cancer, infectious diseases, physiological and mental health, and physical attractiveness as a health certification.  相似文献   
10.
Secondary sexual characters have been hypothesized to demonstrate increased phenotypic variation between and within individuals as compared to ordinary morphological traits. We tested whether this was the case by studying phenotypic variation, expressed as the coefficient of variation (CV), and developmental instability, measured as fluctuating asymmetry (FA), in ornamental and non-ornamental traits of 70 bird species with feather ornamentation while controlling for similarity among species due to common descent. Secondary sexual characters differed from ordinary morphological traits by showing large phenotypic CV and FA. This difference can be explained by the different mode of selection operating on each kind of trait: a history of intense directional (ornaments) and stabilizing selection (non-ornaments). Phenotypic variation is reduced in the sex with more intense sexual selection (males), but does not differ among species with different mating systems. The strength of stabilizing selection arising from natural selection is associated with decreased CV (wing CV is smaller than tarsus or tail CVs). We found evidence of FA being reduced in ornamental feathers strongly affected by aerodynamics (tail feathers) compared to other ornaments, but only in females. In conclusion, CV and FA were not related, suggesting mat phenotypic plasticity and developmental instability are independent components of phenotypic variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号