首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   11篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   14篇
  2010年   20篇
  2009年   20篇
  2008年   14篇
  2007年   17篇
  2006年   6篇
  2005年   10篇
  2004年   3篇
  2003年   4篇
  2001年   4篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1959年   2篇
  1958年   1篇
  1957年   2篇
  1956年   3篇
  1954年   1篇
  1953年   2篇
  1941年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
1.
A total of seven polymorphic microsatellite loci from Gobio gobio were isolated and characterized. A preliminary population survey of 82 specimens from four populations, located in a downstream pollution gradient of cadmium and zinc, demonstrated the usefulness of these primers both in population genetic studies in general, as well as in evaluating the effects of anthropogenic pollution on genetic structure. Overall locus polymorphism ranged from two to 13 alleles. Observed heterozygosity per locus ranged from 0.39 to 0.73.  相似文献   
2.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
3.
Jameson Land, East Greenland is a moulting area of c. 5000 non-breeding Pink-footed Geese and 5000 Barnacle Geese. Breeding populations of both species in the area are small and scattered. The moulting Pinkfeet originate from Iceland, and the Barnacle Geese from other parts of East Greenland. Both species arrive in the area at the end of June and moult their remiges in July. Moulting flocks of the two species seldom mix. Pinkfoot flocks are common along coastlines, in wide rivers and on lakes with open views to all sides, while Barnacle Geese predominate in smaller rivers and on lakes with surrounding hills. During moult the geese, and especially the Pinkfeet, are extremely wary and depend on a safe area of water serving as a refuge with nearby food supplies (sedge-dominated marshes). Barnacle Geese graze in a zone 0–100 m from the refuge, Pinkfeet up to 200–250 m from the refuge. The moulting sites fill up with geese according to available marsh areas, and the grazing pressure on average amounts to 594 goose-days per ha during the moulting period. Food intake is estimated at 149 g and 138 g organic material per 24 h by Pinkfeet and Barnacle Geese, respectively, [n 1984, which was sunny and warm, net above-ground primary production of a Carex subspathacea marsh (the prime feeding ground during moult) from the beginning of growth to the end of July was 13–15 g dw m2, and it is estimated that the geese consumed 60–69% of the production. In 1983, which was cold, geese probably consumed the entire production. Goose grazing did not affect productivity, but nutrient levels were high in grazed compared with ungrazed shoots, and peaked in early July. When separate, the diet of both species comprises sedges and grasses. Where the species co-exist the amount of mosses in the diet increases, especially in Barnacle Geese. With respect to nutrient and fibre contents, moss is a suboptimal food compared to sedges and grasses. When separate, the geese spend 41–46% of the 24 hr grazing. Where they co-exist, Barnacle Geese spend 62% of the time grazing, while Pinkfeet seem unaffected by the presence of Barnacle Geese. It is argued that carrying capacity for moulting geese is reached. Geese compete for resources, the Barnacle Goose suffering from the presence of the other. The observed distribution pattern is suggested to result from (1) Pinkfeet being limited to certain sites due to extreme wariness, and (2) Barnacle Geese trying to avoid competition by utilizing sites which Pinkfeet are reluctant to use. The experience of older Barnacle Geese of stress when settling with Pinkfeet may be the segregation mechanism. Moult coincides with the onset of growth and peak nutrient levels in the vegetation. It is suggested that the geese undertake moult migrations to Jameson Land both to avoid competition for resources with breeding geese and because they gain advantage from a growing, nutritious vegetation.  相似文献   
4.
The lower jaw in Melanognathus gen. nov. and several other Devonian dipnoans is described and compared with that in Neoceratodus. It is a most conservative structure, which apart from the effect of the retrogressive development of the skeleton has hardly changed since Devonian times. A new interpretation of the sensory canal bones is given. With respect to these elements and the structure of the lower jaw as a whole, the dipnoans differ fundamentally from the rhipidistid crossopterygians, tetrapods and aetinopterygians. Several resemblances to the lower jaw in holocephalians are demonstrated. The results confirm the view that the Dipnoi comprise an early specialized and isolated group, perhaps more closely related to the elasmo-branchiomorphs than to the teleostomes and tetrapods.  相似文献   
5.
6.
1. As quantitative information on historical changes in fish community structure is difficult to obtain directly from fish remains in lake sediments, transfer function for planktivorous fish abundance has been developed based on zooplankton remains in surface sediment (upper 1 cm). The transfer function was derived using weighted average regression and calibration against contemporary data on planktivorous fish catch per unit effort (PF-CPUE) in multiple mesh size gill nets. Zooplankton remains were chosen because zooplankton community structure in lakes is highly sensitive to changes in fish predation pressure. The calibration data set consisted of thirty lakes differing in PF-CPUE (range 18–369 fish net–1), epilimnion total phosphorus (range 0.025–1.28 mg P l–1) and submerged macrophyte coverage (0–57%). 2. Correlation of log-transformed PF-CPUE, total phosphorus and submerged macrophyte coverage v the percentage abundance in the sediment of the dominant cladocerans and rotifers revealed that the typical pelagic species correlated most highly to PF-CPUE, while the littoral species correlated most highly to submerged macrophyte coverage. Consequently, only pelagic species were taken into consideration when establishing the fish transfer function. 3. Canonical correspondence analysis (CCA) revealed that the pelagic zooplankton assemblage was highly significantly related to PF-CPUE (axis 1), whereas the influence of total phosphorus and submerged macrophyte coverage was insignificant. Predicted PF-CPUE based on weighted average regression without (WA) and with (WA(tol)) downweighting of zooplankton species tolerance correlated significantly with the observed values (r2 = 0.64 and 0.60 and RMSE = 0.54 and 0.56, respectively). A marginally better relationship (r2 = 0.67) was obtained using WA maximum likelihood estimated optima and tolerance. 4. It is now possible, quantitatively, to reconstruct the historical development in planktivorous fish abundance based on zooplankton fossil records. As good relationships exist between contemporary PF-CPUE data and indicators such as the zooplankton/phytoplankton biomass ratio, Secchi depth and the maximum depth distribution of submerged macrophytes, it is now also possible to derive information on past changes in lake water quality and trophic structure. It will probably prove possible further to improve the transfer function by including other invertebrate remains, e.g. chironomids, Chaoborus, snails, etc., and its scope could be widened by including deeper lakes, more oligotrophic lakes, more acidic lakes and lakes with extensive submerged macrophyte coverage (in the latter case to enable use of the information in the fossil record on plant-associated cladocerans).  相似文献   
7.
The exchange of ammonia between the atmosphere and the canopy of spring barley crops growing at three levels of nitrogen application (medium N, high N and excessive N) was studied over two consecutive growing seasons by use of micrometeorological techniques. In most cases, ammonia was emitted from the canopy to the atmosphere. The emission started around 2 weeks before anthesis, and peaked about or shortly after anthesis. The volatilization of ammonia only took place in the daytime. During the night-time, atmospheric ammonia was frequently aborbed by the canopy. Occasionally, plants in the medium and high N treatments also absorbed ammonia from the atmosphere during the daytime. Daytime absorption of ammonia never occurred in the excessive N canopy. The loss of ammonia from the canopy amounted in both years to 0.5–1.5 kg NH3-N ha?1 and increased with the N status of the canopy. In agreement with the small losses of ammonia, the content of 15N-labelled nitrogen in the plants did not decline during the grain-filling period. The experimental years were characterized by very favourable conditions for grain dry matter formation, and for re-utilization of nitrogen mobilized from leaves and stems. Consequently, a very high part of the nitrogen in the mature plants was located in grain dry matter (80–84% in 1989; 74–80% in 1990). The efficient re-utilization of nitrogen may have reduced the volatilization of ammonia.  相似文献   
8.
1. The impact of changes in submerged macrophyte abundance on fish-zooplankton-phytoplankton interactions was studied in eighteen large-scale (100 m2) enclosures in a shallow eutrophic take. The submerged macrophytes comprised Potamategon pectinatus L., P. pusillus L. and Callitriche hermaphroditica L. while the fish fry stock comprised three-spined sticklebacks, Gasterosteus acuteatus L., and roach, Rutilus rutilus L. 2. In the absence of macrophytes zooplankton biomass was low and dominated by cyclopoid copepods regardless of fish density, while the phytoplankton biovolume was high (up to 38 mm31) and dominated by small pennate diatoms and chlorococcales. When the lake volume infested by submerged macrophytes (PVI) exceeded 15–20% and the fish density was below a catch per unit effort (CPUE) of 10 (approx. 2 fry m?2), planktonic cladoceran biomass was high and dominated by relatively large-sized specimens, while the phytoplankton biovolume was low and dominated by small fast-growing flagellates. At higher fish densities, zooplankton biomass and average biomass of cladocerans decreased and a shift to cyclopoids occurred, while phytoplankton biovolume increased markedly and became dominated by cyanophytes and dinoflagellates. 3. Stepwise multiple linear regressions on log-transformed data revealed that the biomass of Daphnia, Bosmina, Ceriodaphmia and Chydorus were all significantly positively related to PVI and negatively to the abundance of fish or PVI x fish. The average individual biomass of cladocerans was negatively related to fish, but unrelated to PVI. Calculated zooplankton grazing pressure on phytoplankton was positively related to PVI and negatively to PVI x fish. Accordingly the phytoplankton biovolume was negatively related to PVI and to PVI x zooplankton biomass. Cyanophytes and chryptophytes (% of biomass) were positively and Chlorococcales and diatoms negatively related to PVI, while cyanophytes and Chlorococcales were negatively related to PVI x zooplankton biomass. In contrast diatoms and cryptophytes were positively related to the zooplankton biomass or PVI x zooplankton. 4. The results suggest that fish predation has less impact on the zooplankton community in the more structured environment of macrophyte beds, particularly when the PVI exceeds 15–20%. They further suggest that the refuge capacity of macrophytes decreases markedly with increasing fish density (in our study above approximately 10 CPUE). Provided that the density of planktivorous fish is not high, even small improvements in submerged macrophyte abundance may have a substantial positive impact on the zooplankton, leading to a lower phytoplankton biovolume and higher water transparency. However, at high fish densities the refuge effect seems low and no major zooplankton mediated effects of enhanced growth of macrophytes are to be expected.  相似文献   
9.
The lacinia mobilis of the Crustacea Malacostraca is a more or less spine-like movable appendage of the medial mandibular edge, inserted near the base of the incisor process. It occurs in two or possibly three eumalacostracan superorders but is retained in the adult stage only in the Peracarida. The lacinia has been interpreted as the distal member of the spine-row found in many adult Malacostraca and/or their larvae, or alternatively as a derivative of a certain cusp ('cusp b') of the biting edge of the primitive lophogastrids. The distribution, ontogeny and function of the lacinia were studied in a variety of Eumalacostraca. There is great variability in the guiding and locking mechanisms involved in biting, within the subclass and even within single orders. A lacinia-based guiding and locking system is likely to function only in weak mandibles. New evidence is produced in favour of derivation of the lacinia from the spine-row, and the 'cusp b' derivation hypothesis is rejected, 'cusp b' being only a highly specialized lacinia. Doubt is cast upon the unity of the superorder Peracarida mainly because the place of the order Amphipoda within it is regarded as insecure.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号