首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   11篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有51条查询结果,搜索用时 421 毫秒
1.
2.
3.
Vibrio cholerae secretes a number of proteins important for virulence, including cholera toxin. This process requires the products of the eps genes which have homologues in genera such as Aeromonas, Klebsiella and Pseudomonas and are thought to form a membrane-associated multiprotein complex. Here we show that the putative nucleotide-binding protein EpsE is associated with and stabilized by the cytoplasmic membrane via interaction with EpsL. Analysis of fusion proteins between EpsE and the homologous ExeE from Aeromonas hydrophila demonstrates that the N-terminus of EpsE contains the EpsL binding domain and determines species specificity. An intact Walker A box, commonly found in ATP-binding proteins, is required for activity of EpsE in vivo and for autophosphorylation of purified EpsE in vitro. These results indicate that both the kinase activity of EpsE as well as its ability to interact with the putative cytoplasmic membrane protein EpsL are required for translocation of toxin across the outer membrane in Vibrio cholerae.  相似文献   
4.
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans in developed countries throughout the world. This bacterium frequently promotes a commensal lifestyle in the gastrointestinal tracts of many animals including birds and consumption or handling of poultry meats is a prevalent source of C. jejuni for infection in humans. To understand how the bacterium promotes commensalism, we used signature-tagged transposon mutagenesis and identified 29 mutants representing 22 different genes of C. jejuni strain 81-176 involved in colonization of the chick gastrointestinal tract. Among the determinants identified were two adjacent genes, one encoding a methyl-accepting chemotaxis protein (MCP), presumably required for proper chemotaxis to a specific environmental component, and another gene encoding a putative cytochrome c peroxidase that may function to reduce periplasmic hydrogen peroxide stress during in vivo growth. Deletion of either gene resulted in attenuation for growth throughout the gastrointestinal tract. Further examination of 10 other putative MCPs or MCP-domain containing proteins of C. jejuni revealed one other required for wild-type levels of caecal colonization. This study represents one of the first genetic screens focusing on the bacterial requirements necessary for promoting commensalism in a vertebrate host.  相似文献   
5.
The human pathogen Campylobacter jejuni is one of more than 40 naturally competent bacterial species able to import macromolecular DNA from the environment and incorporate it into their genomes. However, in C. jejuni little is known about the genes involved in this process. We used random transposon mutagenesis to identify genes that are required for the transformation of this organism. We isolated mutants with insertions in 11 different genes; most of the mutants are affected in the DNA uptake stage of transformation, whereas two mutants are affected in steps subsequent to DNA uptake, such as recombination into the chromosome or in DNA transport across the inner membrane. Several of these genes encode proteins homologous to those involved in type II secretion systems, biogenesis of type IV pili, and competence for natural transformation in gram-positive and gram-negative species. Other genes identified in our screen encode proteins unique to C. jejuni or are homologous to proteins that have not been shown to play a role in the transformation in other bacteria.  相似文献   
6.
7.
8.
9.
10.
Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号