首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Molecular data can aid in the resolution of conflicting hypotheses generated through difficulties in the interpretation of morphological data and/or an incomplete fossil record. Moreover, the reconstruction of phylogenetic relationships using molecular data may help to trace back the origin of morphological innovations which had a major impact on the radiation of a taxonomical group. In this work, different nuclear (18S, 28S, and H3) and mitochondrial (16S and COI) gene regions were sequenced in a total of 35 Achelatan species to test conflicting hypotheses of evolutionary relationships within the Achelata infraorder and solve the taxonomic disagreements in the group. The combined molecular dataset strongly supports the hypothesis that Achelata is a monophyletic group composed of two main families: Palinuridae and Scyllaridae. Synaxidae is found to be a polyphyletic group, which should be included within Palinuridae. Consequently, our results indicate that the origin of the stridulating organ occurred only once during Achelata evolution. Finally, the two main clades found within the Scyllaridae are in agreement with previous inferences based on adult morphological data. The dating of divergence of Achelata obtained with a relaxed-clock model is compatible with previous hypotheses of a Triassic origin of the Achelata.  相似文献   

2.
Matrix representation with parsimony (MRP) supertree construction has been criticized because the supertree may specify clades that are contradicted by every source tree contributing to it. Such unsupported clades may also occur using other supertree methods; however, their incidence is largely unknown. In this study, I investigated the frequency of unsupported clades in both simulated and empirical MRP supertrees. Here, I propose a new index, QS, to quantify the qualitative support for a supertree and its clades among the set of source trees. Results show that unsupported clades are very rare in MRP supertrees, occurring most often when there are few source trees that all possess the same set of taxa. However, even under these conditions the frequency of unsupported clades was <0.2%. Unsupported clades were absent from both the Carnivora and Lagomorpha supertrees, reflecting the use of large numbers of source trees for both. The proposed QS indices are correlated broadly with another measure of quantitative clade support (bootstrap frequencies, as derived from resampling of the MRP matrix) but appear to be more sensitive. More importantly, they sample at the level of the source trees and thus, unlike the bootstrap, are suitable for summarizing the support of MRP supertree clades.  相似文献   

3.

Background

Although it has proven to be an important foundation for investigations of carnivoran ecology, biology and evolution, the complete species-level supertree for Carnivora of Bininda-Emonds et al. is showing its age. Additional, largely molecular sequence data are now available for many species and the advancement of computer technology means that many of the limitations of the original analysis can now be avoided. We therefore sought to provide an updated estimate of the phylogenetic relationships within all extant Carnivora, again using supertree analysis to be able to analyze as much of the global phylogenetic database for the group as possible.

Results

In total, 188 source trees were combined, representing 114 trees from the literature together with 74 newly constructed gene trees derived from nearly 45,000 bp of sequence data from GenBank. The greater availability of sequence data means that the new supertree is almost completely resolved and also better reflects current phylogenetic opinion (for example, supporting a monophyletic Mephitidae, Eupleridae and Prionodontidae; placing Nandinia binotata as sister to the remaining Feliformia). Following an initial rapid radiation, diversification rate analyses indicate a downturn in the net speciation rate within the past three million years as well as a possible increase some 18.0 million years ago; numerous diversification rate shifts within the order were also identified.

Conclusions

Together, the two carnivore supertrees remain the only complete phylogenetic estimates for all extant species and the new supertree, like the old one, will form a key tool in helping us to further understand the biology of this charismatic group of carnivores.  相似文献   

4.
Supertree methods are used to assemble separate phylogenetic trees with shared taxa into larger trees (supertrees) in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes (flips) to the matrix representation of the set of input trees to resolve their incompatibilities. A previous flip supertree algorithm was limited to finding exact solutions and was only feasible for small input trees. We developed a heuristic algorithm for the flip supertree problem suitable for much larger input trees. We used a series of 48- and 96-taxon simulations to compare supertrees constructed with the flip supertree heuristic algorithm with supertrees constructed using other approaches, including MinCut (MC), modified MC (MMC), and matrix representation with parsimony (MRP). Flip supertrees are generally far more accurate than supertrees constructed using MC or MMC algorithms and are at least as accurate as supertrees built with MRP. The flip supertree method is therefore a viable alternative to other supertree methods when the number of taxa is large.  相似文献   

5.
As the most diverse group of early tetrapods, temnospondyls provide a unique opportunity to investigate cladogenetic patterns among basal limbed vertebrates. We present five species-level supertrees for temnospondyls, built using a variety of methods. The standard MRP majority rule consensus including minority components shows slightly greater resolution than other supertrees, and its shape matches well several currently accepted hypotheses of higher-level phylogeny for temnospondyls as a whole. Also, its node support is higher than those of other supertrees (except the combined standard plus Purvis MRP supertree). We explore the distribution of significant as well as informative changes (shifts) in branch splitting employing the standard MRP supertree as a reference, and discuss the temporal distribution of changes in time-sliced, pruned trees derived from this supertree. Also, we analyse those shifts that are most relevant to the end-Permian mass extinction. For the Palaeozoic, shifts occur almost invariably along branches that connect major Palaeozoic groups. By contrast, shifts in the Mesozoic occur predominantly within major groups. Numerous shifts bracket narrowly the end-Permian extinction, indicating not only rapid recovery and extensive diversification of temnospondyls over a short time period after the extinction event (possibly less than half a million years), but also the role of intense cladogenesis in the late part of the Permian (although this was counteracted by numerous 'background' extinctions).  相似文献   

6.
Given a collection of rooted phylogenetic trees with overlapping sets of leaves, a compatible supertree $S$ is a single tree whose set of leaves is the union of the input sets of leaves and such that $S$ agrees with each input tree when restricted to the leaves of the input tree. Typically with trees from real data, no compatible supertree exists, and various methods may be utilized to reconcile the incompatibilities in the input trees. This paper focuses on a measure of robustness of a supertree method called its ``radius" $R$. The larger the value of $R$ is, the further the data set can be from a natural correct tree $T$ and yet the method will still output $T$. It is shown that the maximal possible radius for a method is $R = 1/2$. Many familiar methods, both for supertrees and consensus trees, are shown to have $R = 0$, indicating that they need not output a tree $T$ that would seem to be the natural correct answer. A polynomial-time method Normalized Triplet Supertree (NTS) with the maximal possible $R = 1/2$ is defined. A geometric interpretion is given, and NTS is shown to solve an optimization problem. Additional properties of NTS are described.  相似文献   

7.
A Robinson-Foulds (RF) supertree for a collection of input trees is a tree containing all the species in the input trees that is at minimum total RF distance to the input trees. Thus, an RF supertree is consistent with the maximum number of splits in the input trees. Constructing RF supertrees for rooted and unrooted data is NP-hard. Nevertheless, effective local search heuristics have been developed for the restricted case where the input trees and the supertree are rooted. We describe new heuristics, based on the Edge Contract and Refine (ECR) operation, that remove this restriction, thereby expanding the utility of RF supertrees. Our experimental results on simulated and empirical data sets show that our unrooted local search algorithms yield better supertrees than those obtained from MRP and rooted RF heuristics in terms of total RF distance to the input trees and, for simulated data, in terms of RF distance to the true tree.  相似文献   

8.
The evolutionary pathway of Palinuridae (Crustacea, Decapoda) is still controversial, uncertain and unexplored, expecially from a karyological point of view. Here we describe the South African spiny lobster Jasus lalandii karyotype: n and 2n values, heterochromatin distribution, nucleolar organizer region (NOR) location and telomeric repeat structure and location. To compare the genomic and chromosomal organization in Palinuridae we located NORs in Panulirus regius, Palinurus gilchristi and Palinurus mauritanicus: all species showed multiple NORs. In J. lalandii NORs were located on three chromosome pairs, with interindividual polymorphism. In P. regius and in the two Palinurus species NORs were located on two chromosome pairs. In the two last species 45S ribosomal gene loci were also found on B chromosomes. In addition, the nature and location of telomeric repeats were investigated by FISH in J. lalandii, P. gilchristi, P. mauritanicus Palinurus elephas, and P. regius (Palinuridae, Achelata), and in Scyllarus arctus (Scyllaridae, Achelata): all these Achelata species showed the (TTAGG)n pentameric repeats. Furthermore, in J. lalandii these repeats occurred in all the telomeres and in some interstitial chromosomal sites, associated with NORs.  相似文献   

9.

Background  

Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees.  相似文献   

10.

Background  

Supertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on the well established Robinson-Foulds (RF) distance have the potential to build supertrees that retain much information from the input trees. Specifically, the RF supertree problem seeks a binary supertree that minimizes the sum of the RF distances from the supertree to the input trees. Thus, an RF supertree is a supertree that is consistent with the largest number of clusters (or clades) from the input trees.  相似文献   

11.
Nonparamtric bootstrapping methods may be useful for assessing confidence in a supertree inference. We examined the performance of two supertree bootstrapping methods on four published data sets that each include sequence data from more than 100 genes. In "input tree bootstrapping," input gene trees are sampled with replacement and then combined in replicate supertree analyses; in "stratified bootstrapping," trees from each gene's separate (conventional) bootstrap tree set are sampled randomly with replacement and then combined. Generally, support values from both supertree bootstrap methods were similar or slightly lower than corresponding bootstrap values from a total evidence, or supermatrix, analysis. Yet, supertree bootstrap support also exceeded supermatrix bootstrap support for a number of clades. There was little overall difference in support scores between the input tree and stratified bootstrapping methods. Results from supertree bootstrapping methods, when compared to results from corresponding supermatrix bootstrapping, may provide insights into patterns of variation among genes in genome-scale data sets.  相似文献   

12.
Semi-strict supertrees   总被引:3,自引:1,他引:2  
A method to calculate semi‐strict supertrees is proposed. The semi‐strict supertrees are calculated by creating the matrix that represents all the groups in the source trees (as done in already existing techniques), and then finding the trees determined by the ultra‐clique. The ultra‐clique is defined as the set of characters where each possible subset is compatible with each possible subset from the entire matrix. Finding the ultra‐clique is computationally complex (since in most cases many of the characters have missing entries), but a heuristic method yields reliable results. When the trees have no conflict, or when there are only two trees, the method produces the exact result for any ordering of the input trees and any ordering of the groups within them; when there are more than two trees and they have conflict, a single ordering or sequence can create some spurious groups, but doing multiple sequences eliminates the spurious groups. The method uses only state set operations, and is thus easily implemented in computer programs. Unlike any existing type of supertree, semi‐strict supertrees display all the groups, and only those groups, that are implied by at least some combination of the input trees and contradicted by none. The idea that supertrees should take into account the number of occurences of a given group, so as to retain some groups even in the case of conflict, is discussed; it is argued that a conceptual equivalent of the majority rule consensus is not possible when the sets of taxa differ among trees. Also, when pruning taxa from a set of trees, the supertree can display groups that contradict the consensus for the entire trees, suggesting that supertrees for matrices with very dissimilar sets of taxa should be interpreted with caution. If (for any valid reason) the data cannot be combined in a single matrix, it is advisable that the taxon sets in the matrices be as similar as possible.  相似文献   

13.
Large and comprehensive phylogenetic trees are desirable for studying macroevolutionary processes and for classification purposes. Such trees can be obtained in two different ways. Either the widest possible range of taxa can be sampled and used in a phylogenetic analysis to produce a "big tree," or preexisting topologies can be used to create a supertree. Although large multigene analyses are often favored, combinable data are not always available, and supertrees offer a suitable solution. The most commonly used method of supertree reconstruction, matrix representation with parsimony (MRP), is presented here. We used a combined data set for the Poaceae to (1) assess the differences between an approach that uses combined data and one that uses different MRP modifications based on the character partitions and (2) investigate the advantages and disadvantages of these modifications. Baum and Ragan and Purvis modifications gave similar results. Incorporating bootstrap support associated with pre-existing topologies improved Baum and Ragan modification and its similarity with a combined analysis. Finally, we used the supertree reconstruction approach on 55 published phylogenies to build one of most comprehensive phylogenetic trees published for the grass family including 403 taxa and discuss its strengths and weaknesses in relation to other published hypotheses.  相似文献   

14.
Maximum likelihood supertrees   总被引:2,自引:0,他引:2  
  相似文献   

15.
Supertrees result from combining many smaller, overlapping phylogenetic trees into a single, more comprehensive tree. As such, supertree construction is probably as old as the field of systematics itself, and remains our only way of visualizing the Tree of Life as a whole. Over the past decade, supertree construction has gained a more formal, objective footing, and has become an area of active theoretical and practical research. Here, I review the history of the supertree approach, focusing mainly on its current implementation. The supertrees of today represent some of the largest, complete phylogenies available for many groups, but are not without their critics. I conclude by arguing that the ever-growing molecular revolution will result in supertree construction taking on a new role and implementation in the future for analyzing large DNA sequence matrices as part of a divide-and-conquer phylogenetic approach.  相似文献   

16.
The estimation of ever larger phylogenies requires consideration of alternative inference strategies, including divide-and-conquer approaches that decompose the global inference problem to a set of smaller, more manageable component problems. A prominent locus of research in this area is the development of supertree methods, which estimate a composite tree by combining a set of partially overlapping component topologies. Although promising, the use of component tree topologies as the primary data dissociates supertrees from complexities within the underling character data and complicates the evaluation of phylogenetic uncertainty. We address these issues by exploring three approaches that variously incorporate nonparametric bootstrapping into a common supertree estimation algorithm (matrix representation with parsimony, although any algorithm might be used), including bootstrap-weighting, source-tree bootstrapping, and hierarchical bootstrapping. We illustrate these procedures by means of hypothetical and empirical examples. Our preliminary experiments suggest that these methods have the potential to improve the correspondence of supertree estimates to those derived from simultaneous analysis of the combined data and to allow uncertainty in supertree topologies to be quantified. The ability to increase the transparency of supertrees to the underlying character data has several practical implications and sheds new light on an old debate. These methods have been implemented in the freely available program, tREeBOOT.  相似文献   

17.
Compatibility of phylogenetic trees is the most important concept underlying widely-used methods for assessing the agreement of different phylogenetic trees with overlapping taxa and combining them into common supertrees to reveal the tree of life. The notion of ancestral compatibility of phylogenetic trees with nested taxa was recently introduced. In this paper we analyze in detail the meaning of this compatibility from the points of view of the local structure of the trees, of the existence of embeddings into a common supertree, and of the joint properties of their cluster representations. Our analysis leads to a very simple polynomial-time algorithm for testing this compatibility, which we have implemented and is freely available for download from the BioPerl collection of Perl modules for computational biology.  相似文献   

18.
New examples are presented, showing that supertree methods such as matrix representation with parsimony, minimum flip trees, and compatibility analysis of the matrix representing the input trees, produce supertrees that cannot be interpreted as displaying the groups present in the majority of the input trees. These methods may produce a supertree displaying some groups present in the minority of the trees, and contradicted by the majority. Of the three methods, compatibility analysis is the least used, but it seems to be the one that differs the least from majority rule consensus. The three methods are similar in that they choose the supertree(s) that best fit the set of input trees (quantified as some measure of the fit to the matrix representation of the input trees); in the case of complete trees, it is argued that, for a supertree method to be equivalent to majority rule or frequency difference consensus, two necessary (but not sufficient) conditions must be met. First, the measure of fit between a supertree and an input tree must be symmetrical. Second, the fit for a character representing a group must be measured as absolute: either it fits or it does not fit. In the restricted case of complete and equally resolved input trees, compatibility analysis (unlike MRP and minimum flipping) fulfils these two conditions: it is symmetrical (i.e., as long as the trees have the same taxon sets and are equally resolved, the number of characters in the matrix representation of tree A that require homoplasy in tree B is always the same as the number of characters in the matrix representation of tree B that require homoplasy in tree A) and it measures fit as all‐or‐none. In the case of just two complete and equally resolved input trees, the two conditions (symmetry and absolute fit) are necessary and sufficient, which explains why the compatibility analysis of such trees behaves as majority consensus. With more than two such trees, these conditions are still necessary but no longer sufficient for the equivalence; in such cases, the compatibility supertree may differ significantly from the majority rule consensus, even when these conditions apply (as shown by example). MRP and minimum flipping are asymmetric and measure various degrees of fit for each character, which explains why they often behave very differently from majority rule procedures, and why they are very likely to have groups contradicted by each of the input trees, or groups supported by a minority of the input trees. © The Willi Hennig Society 2005.  相似文献   

19.
Supertree algorithms for ancestral divergence dates and nested taxa   总被引:2,自引:0,他引:2  
MOTIVATION: Supertree methods have been often identified as a possible approach to the reconstruction of the 'Tree of Life'. However, a limitation of such methods is that, typically, they use just leaf-labelled phylogenetic trees to infer the resulting supertree. RESULTS: In this paper, we describe several new supertree algorithms that extend the allowable information that can be used for phylogenetic inference. These algorithms have been recently implemented and we describe here two illustrative applications. AVAILABILITY: These new algorithms are freely available for application at http://darwin.zoology.gla.ac.uk/cgi-bin/build.pl.  相似文献   

20.
This paper examines a recent proposal to calculate supertrees by minimizing the sum of subtree prune‐and‐regraft distances to the input trees. The supertrees thus calculated may display groups present in a minority of the input trees but contradicted by the majority, or groups that are not supported by any input tree or combination of input trees. The proponents of the method themselves stated that these are serious problems of “matrix representation with parsimony”, but they can in fact occur in their own method. The majority rule supertrees, being explicitly clade‐based, cannot have these problems, and seem much more suited to retrieving common clades from a set of trees with different taxon sets. However, it is dubious that so‐called majority rule supertrees can always be interpreted as displaying those clades present (or compatible with) with a majority of the trees. The majority rule consensus is always a median tree, in terms of the Robinson–Foulds distances (i.e. it minimizes the sum of Robinson–Foulds distances to the input trees). In contrast, majority rule supertrees may not be median—different, contradictory trees may minimize Robinson–Foulds distances, while their strict consensus does not. If being “majority” results from being median in Robinson–Foulds distances, this means that in the supertree setting a “majority” is ambiguously defined, sometimes achievable only by mutually contradictory trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号