首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3081篇
  免费   265篇
  国内免费   4篇
  2023年   20篇
  2022年   10篇
  2021年   87篇
  2020年   56篇
  2019年   71篇
  2018年   91篇
  2017年   64篇
  2016年   96篇
  2015年   190篇
  2014年   208篇
  2013年   238篇
  2012年   247篇
  2011年   255篇
  2010年   173篇
  2009年   124篇
  2008年   181篇
  2007年   174篇
  2006年   158篇
  2005年   154篇
  2004年   153篇
  2003年   121篇
  2002年   96篇
  2001年   24篇
  2000年   19篇
  1999年   22篇
  1998年   25篇
  1997年   19篇
  1996年   10篇
  1995年   17篇
  1994年   24篇
  1993年   24篇
  1992年   16篇
  1991年   17篇
  1990年   11篇
  1989年   16篇
  1988年   6篇
  1987年   10篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   12篇
  1981年   6篇
  1980年   7篇
  1979年   10篇
  1978年   8篇
  1977年   6篇
  1976年   8篇
  1975年   8篇
  1974年   6篇
  1973年   6篇
排序方式: 共有3350条查询结果,搜索用时 140 毫秒
1.
Dynamic subcellular distributions of signaling system components are critical regulators of cellular signal transduction through their control of molecular interactions. Understanding how signaling activity depends on such distributions and the cellular structures driving them is required for comprehensive insight into signal transduction. In the activation of primary murine T cells by antigen presenting cells (APC) signaling intermediates associate with various subcellular structures, prominently a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell. While actin dynamics are well established as general regulators of cellular organization, their role in controlling signaling organization in primary T cell:APC couples and the specific cellular structures driving it is unresolved. Using modest interference with actin dynamics with a low concentration of Jasplakinolide as corroborated by costimulation blockade we show that T cell actin preferentially controls lamellal signaling localization and activity leading downstream to calcium signaling. Lamellal localization repeatedly related to efficient T cell function. This suggests that the transient lamellal actin matrix regulates T cell signaling associations that facilitate T cell activation.  相似文献   
2.
3.
4.
5.
6.
7.
8.
Intestinal disaccharide uptake was studied with isolated brush-border membrane vesicles lacking the corresponding hydrolase. Either 15-day-old chick intestine, lacking both trehalase and lactase, or newborn pig intestine, lacking sucrase, was used. Both animal species yielded osmotically active vesicles capable of D-glucose/Na+ cotransport with a positive overshoot test. Vesicles from either origin gave quantitatively similar results in regard to both initial uptake rates and relative vesicle volumes. The nontransported analogs D-mannitol and L-glucose were used as diffusion markers. When tested with the appropriate disaccharidase-lacking vesicles, lactose, trehalose and sucrose exhibited uptake rates indistinguishable from those of D-mannitol and L-glucose. These uptakes were unaffected by the presence or absence of Na+, phlorizin and Tris. Chromatographic analysis confirmed the lack of hydrolysis of each disaccharide after prolonged incubation. The inescapable conclusion seems to be that intact disaccharides are not transported through the brush-border membrane, their uptake occurring through simple diffusion.  相似文献   
9.
The conformation of the glucotriose unit of the protein glycosylation precursor Glc3Man9GlcNAc2 was assessed by deuterium exchange studies on the model tetrasaccharide alpha Glc----2 alpha Glc----3 alpha Glc----3 alpha Man----OCH2CH2CH3 dissolved in deuterated dimethyl sulfoxide. The hydroxyl proton on C-2 of the nonreducing end glucose and on C-4 of the glucose attached to mannose both show dramatic isotope shifts indicative of a strong hydrogen bond between these two hydroxyl groups. Such a hydrogen bond requires a fixed conformation of the glucotriose unit that brings these hydroxyl groups within 3 A of each other, a conformation that is supported by molecular modeling based on hard-sphere exo-anomeric (HSEA) calculations. The temperature dependence of the hydroxyl proton chemical shifts supports the postulated hydrogen bond, and the torsional angles between the three glucose units derived from the HSEA calculations are consistent with results from related studies on other saccharides. The results support a model for biochemical function in which the glucotriose unit could modulate the activity of the oligosaccharyltransferase by binding in a fixed conformation to a specific effector site in the enzyme.  相似文献   
10.
Total cell mannoprotein was isolated from Saccharomyces cerevisiae X2180 mutants that have defects in elongation of the outer chain attached to the N-linked core oligosaccharides (mnn7, mnn8, mnn9, and mnn10) (Ballou, L., Cohen, R. E., and Ballou, C. E. (1980) J. Biol. Chem. 255, 5986-5991). Comparison of the oligosaccharides released by endoglucosaminidase H digestion confirmed that the mnn9 mutation eliminates all but two mannoses of the outer chain, whereas the mnn8 and mnn10 strains produce outer chains of variable but similar lengths. The isolate designated mnn7 was found to be allelic with mnn8. Haploid mutants of the type mnn8 mnn9 or mnn9 mnn10 had the mnn9 phenotype, which established that the mnn9 defect is dominant and presumably acts at a processing step prior to the steps affected by mnn8 and mnn10. Analysis of the mnn1 mnn2 mnn10 oligosaccharides revealed that the heterogeneous outer chain contained 6-16 alpha 1----6-linked mannose units and each was terminated by a single alpha 1----2-linked mannose unit, whereas the core lacked one such unit that was present in the mnn9 oligosaccharide. The results are consistent with and support the hypothesis (Gopal, P. K., and Ballou, C. E. (1988) Proc. Natl. Acad. Sci. U.S.A. 84, 8824-8828) that addition of such a side-chain mannose unit is associated with termination of outer chain elongation in these mutants and may serve as a stop signal that regulates outer chain synthesis in the parent wild-type strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号