首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584657篇
  免费   65124篇
  国内免费   335篇
  2021年   5146篇
  2018年   7154篇
  2017年   6407篇
  2016年   9604篇
  2015年   14169篇
  2014年   15393篇
  2013年   20614篇
  2012年   24288篇
  2011年   23491篇
  2010年   15429篇
  2009年   13873篇
  2008年   19850篇
  2007年   20039篇
  2006年   18519篇
  2005年   17945篇
  2004年   17677篇
  2003年   16400篇
  2002年   15342篇
  2001年   24293篇
  2000年   24193篇
  1999年   19393篇
  1998年   7289篇
  1997年   7272篇
  1996年   7112篇
  1995年   6584篇
  1994年   6621篇
  1993年   6377篇
  1992年   15234篇
  1991年   14385篇
  1990年   14000篇
  1989年   13887篇
  1988年   12442篇
  1987年   11999篇
  1986年   11019篇
  1985年   10843篇
  1984年   9302篇
  1983年   7987篇
  1982年   6319篇
  1981年   5757篇
  1980年   5384篇
  1979年   8707篇
  1978年   6744篇
  1977年   6187篇
  1976年   5725篇
  1975年   6188篇
  1974年   6660篇
  1973年   6487篇
  1972年   5820篇
  1971年   5373篇
  1969年   4586篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
2.
Helices are the most common elements of RNA secondary structure. Despite intensive investigations of various types of RNAs, the evolutionary history of the formation of new helices (novel helical structures) remains largely elusive. Here, by studying the nuclear ribosomal Internal Transcribed Spacer 2 (ITS2), a fast-evolving part of the eukaryotic nuclear ribosomal operon, we identify two possible types of helix formation: one type is “dichotomous helix formation”—transition from one large helix to two smaller helices by invagination of the apical part of a helix, which significantly changes the shape of the original secondary structure but does not increase its complexity (i.e., the total length of the RNA). An alternative type is “lateral helix formation”—origin of an extra helical region by the extension of a bulge loop or a spacer in a multi-helix loop of the original helix, which does not disrupt the pre-existing structure but increases RNA size. Moreover, we present examples from the RNA sequence literature indicating that both types of helix formation may have implications for RNA evolution beyond ITS2.  相似文献   
3.
4.
5.
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive function. Compared to the level in healthy controls (HC), no elevation of MDSC in chronic hepatitis C (cHEP-C) patients was found, and there was no difference in MDSC based on genotype or viral load (P > 0.25). Moreover, MDSC of cHEP-C patients inhibited CD8 T cell function as efficiently as MDSC of HC did. Since we detected neither quantitative nor qualitative differences in MDSC of cHEP-C patients relative to those of HC, we postulate that MDSC in peripheral blood are most likely not significant regarding immune dysfunction in cHEP-C.  相似文献   
6.
7.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
8.
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.  相似文献   
9.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号