首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   11篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   6篇
  2004年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1982年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Cocaine dependence is a neuropsychiatric disorder in which both environmental and genetic factors are involved. Several processes, that include reward and neuroadaptations, mediate the transition from use to dependence. In this regard, dopamine and serotonin neurotransmission systems are clearly involved in reward and other cocaine‐related effects, whereas neurotrophic factors may be responsible for neuroadaptations associated with cocaine dependence. We examined the contribution to cocaine dependence of 37 genes related to the dopaminergic and serotoninergic systems, neurotrophic factors and their receptors through a case–control association study with 319 single nucleotide polymorphisms selected according to genetic coverage criteria in 432 cocaine‐dependent patients and 482 sex‐matched unrelated controls. Single marker analyses provided evidence for association of the serotonin receptor HTR2A with cocaine dependence [rs6561333; nominal P‐value adjusted for age = 1.9e?04, odds ratio = 1.72 (1.29–2.30)]. When patients were subdivided according to the presence or absence of psychotic symptoms, we confirmed the association between cocaine dependence and HTR2A in both subgroups of patients. Our data show additional evidence for the involvement of the serotoninergic system in the genetic susceptibility to cocaine dependence.  相似文献   
2.
Origins of Life and Evolution of Biospheres - In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a...  相似文献   
3.
The primary structure of a bacteriocin produced by Enterococcus hirae DCH5 was determined by combined amino acid and DNA sequencing. Nucleotide analysis of a 2838-bp DNA fragment of E. hirae DCH5 revealed five putative ORFs. The first orf (hirJM79) encodes a 74-amino-acid peptide containing an N-terminal signal peptide of 30 amino acids, followed by the amino acid sequence of the mature bacteriocin, hiracin JM79 (HirJM79), of 44 amino acids. The second orf (hiriJM79) encodes the putative immunity protein of HirJM79. Contiguous ORFs encode a putative mobilization protein (orfC), a relaxase/mobilization nuclease domain (orfD), and a hypothetical protein (orfE). The production and functional expression of HirJM79 by heterologous hosts suggest that hirJM79 is the minimum requirement for production of biologically active HirJM79, that HirJM79 is most likely externalized by the general secretory pathway or sec-dependent pathway, and that HiriJM79 is the immunity protein for HirJM79.  相似文献   
4.
Polyclonal antibodies with specificity for enterocin L50A (EntL50A), enterocin L50B (EntL50B), and enterocin Q (EntQ) produced by Enterococcus faecium L50 have been generated by immunization of rabbits with chemically synthesized peptides derived from the C terminus of EntL50A (LR1) and EntL50B (LR2) and from the complete enterocin Q (EntQ) conjugated to the carrier protein keyhole limpet hemocyanin (KLH). The sensitivity and specificity of these antibodies were evaluated by a noncompetitive indirect enzyme-linked immunosorbent assay (NCI-ELISA) and a competitive indirect ELISA (CI-ELISA). The NCI-ELISA was valuable for detecting anti-EntL50A-, anti-EntL50B-, and anti-EntQ-specific antibodies in the sera of the LR1-KLH-, LR2-KLH-, and EntQ-KLH-immunized animals, respectively. Moreover, these antibodies and those specific for enterocin P (EntP) obtained in a previous work (J. Gutiérrez, R. Criado, R. Citti, M. Martín, C. Herranz, M. F. Fernández, L. M. Cintas, and P. E. Hernández, J. Agric. Food Chem. 52:2247-2255, 2004) were used in an NCI-ELISA to detect and quantify the production of EntL50A, EntL50B, EntP, and EntQ by the multiple-bacteriocin producer E. faecium L50 grown at different temperatures (16 to 47 degrees C). Our results show that temperature has a strong influence on bacteriocin production by this strain. EntL50A and EntL50B are synthesized at 16 to 32 degrees C, but production becomes negligible when the growth temperature is above 37 degrees C, whereas EntP and EntQ are synthesized at temperatures ranging from 16 to 47 degrees C. Maximum EntL50A and EntL50B production was detected at 25 degrees C, while EntP and EntQ are maximally produced at 37 and 47 degrees C, respectively. The loss of plasmid pCIZ1 (50 kb) and/or pCIZ2 (7.4 kb), encoding EntL50A and EntL50B as well as EntQ, respectively, resulted in a significant increase in production and stability of the chromosomally encoded EntP.  相似文献   
5.
Under neutral conditions, spontaneous mirror symmetry breaking has been occasionally reported for aldol reactions starting from achiral reagents and conditions. Chiral induction might be interpreted in terms of autocatalysis exerted by chiral mono‐aldol or bis‐aldol products as source of initial enantiomeric excesses, which may account for such experimental observations. We describe here a thorough Density Functional Theory (DFT) study on this complex and otherwise difficult problem, which provides some insights into this phenomenon. The picture adds further rationale to an in‐depth analysis by Moyano et al, who showed the isolation and characterization of bis‐aldol adducts and their participation in a complex network of reversible steps. However, the lack of enantiodiscrimination (ees vanish rapidly in solution) suggests, according to the present results, a weak association in complexes formed by the catalysts and substrates. The latter would also be consistent with almost flat transition states having similar heights for competitive catalyst‐bound transition structures (actually, we were unable to locate them at the level explored). Overall, neither autocatalysis as once conjectured nor mutual inhibition of enantiomers appears to be operating mechanisms. Asymmetric amplification in early stages harnessing unavoidable enantiomeric imbalances in reaction mixtures of chiral products represents a plausible interpretation.  相似文献   
6.
A segregationally stable expression and secretion vector for Saccharomyces cerevisiae, named pYABD01, was constructed by cloning the yeast gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) into the S. cerevisiae high-copy-number expression vector pYES2. The structural genes of the two leaderless peptides of enterocin L50 (EntL50A and EntL50B) from Enterococcus faecium L50 were cloned, separately (entL50A or entL50B) and together (entL50AB), into pYABD01 under the control of the galactose-inducible promoter PGAL1. The generation of recombinant S. cerevisiae strains heterologously expressing and secreting biologically active EntL50A and EntL50B demonstrates the suitability of the MFα1s-containing vector pYABD01 to direct processing and secretion of these antimicrobial peptides through the S. cerevisiae Sec system.Lactic acid bacteria (LAB) are widely known for their ability to produce a variety of ribosomally synthesized proteins or peptides, referred to as bacteriocins, displaying antimicrobial activity against a broad range of gram-positive bacteria and, to a lesser extent, gram-negative bacteria, including spoilage and food-borne pathogenic microorganisms (11, 19, 33, 34, 36, 37). These antimicrobials may be classified into three main classes: (i) the lantibiotics, or posttranslationally modified peptides; (ii) the nonmodified, small, heat-stable peptides; and (iii) the large, heat-labile protein bacteriocins. Class II bacteriocins are further grouped into five subclasses: the subclass IIa (pediocin-like bacteriocins containing the N-terminal conserved motif YGNGVxC), the subclass IIb (two-peptide bacteriocins), the subclass IIc (leaderless bacteriocins), the subclass IId (circular bacteriocins), and the subclass IIe (other peptide bacteriocins) (17, 19, 21, 37). All lantibiotics and most class II bacteriocins are synthesized as biologically inactive precursors containing an N-terminal extension (the so-called double-glycine-type leader sequence or the Sec-dependent signal peptide), which is cleaved off concomitantly with externalization of biologically active bacteriocins by a dedicated ATP-binding cassette transporter and its accessory protein or by the Sec system and the signal peptidases, respectively (11, 17). Interestingly, only a few bacteriocins described to date are synthesized without an N-terminal extension, including enterocin L50 (L50A and L50B) (8), enterocin Q (EntQ) (10), enterocin EJ97 (41), and the bacteriocin LsbB (20).In recent years, there has been an increasing interest in the application of bacteriocinogenic microorganisms and/or their bacteriocins as biopreservatives to guarantee the safety and quality of foods and beverages, such as fermented vegetables and meats, dairy and fish products, and wine and beer (12, 15, 16, 39, 47). Three main strategies for the use of bacteriocins as food biopreservatives have been proposed: (i) addition of a purified/semipurified bacteriocin preparation as a food additive; (ii) use of a substrate previously fermented by a bacteriocin-producing strain as a food ingredient; and/or (iii) inoculation of a culture to produce the bacteriocin in situ in fermented foods (13, 15). The lantibiotic nisin A is the most widely characterized bacteriocin and the only one that has been legally approved in more than 48 countries as a food additive for use in certain types of cheeses (13, 16). Likewise, nisin A has been approved as a beer additive in Australia and New Zealand (16). However, the difficulties encountered in addressing the regulatory approval of new bacteriocins as food additives have spurred the development of the other bacteriocin-based food biopreservation strategies (13, 17).Beer is a beverage with a remarkable microbiological stability and is considered as a food substrate difficult to spoil. However, some LAB, such as Lactobacillus brevis, Lactobacillus lindneri, and Pediococcus damnosus, are able to spoil beer and are recognized as the most hazardous bacteria for breweries, being responsible for approximately 70% of microbial beer spoilage incidents (40, 47). The ever-growing consumer demand for less-processed and less chemically preserved foods and beverages is promoting the development of alternative biocontrol strategies, such as those based on the use of bacteriocins as biopreservatives (12, 15, 39, 47). However, beyond the strict requirements to fulfill legal regulations, the commercial application of bacteriocins as beer additives is hindered mainly by low bacteriocin production yields and increases in production costs (44). Considering that Saccharomyces cerevisiae is commonly used as starter culture for brewing (24, 28, 35), a novel beer biopreservation strategy based on the development of bactericidal S. cerevisiae brewing strains has been proposed to overcome the aforementioned challenges (44, 46, 47). In this respect, the heterologous production of LAB bacteriocins, namely, pediocin PA-1 (PedPA-1) from Pediococcus acidilactici PAC1.0 and plantaricin 423 from Lactobacillus plantarum 423, by laboratory strains of S. cerevisiae has been reported (44, 46).Enterocin L50 (EntL50) is a commonly found bacteriocin composed of two highly related leaderless antimicrobial peptides, enterocin L50A (EntL50A) and enterocin L50B (EntL50B), which possesses a broad antimicrobial spectrum against LAB, food-borne pathogenic bacteria, and human and animal clinical pathogens (8, 9, 10, 11). Previous work by our group showed that EntL50 (EntL50A and EntL50B) may be used as a beer biopreservative to inhibit the growth of beer spoilage bacteria (1). Therefore, genetically engineered strains of S. cerevisiae heterologously expressing and secreting EntL50A and EntL50B have been developed in this work. For this purpose, we constructed the segregationally stable expression and secretion vector pYABD01, which allowed the secretion of biologically active EntL50A and EntL50B directed by MFα1s through the S. cerevisiae Sec system.  相似文献   
7.
The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.  相似文献   
8.
Lactic acid bacteria were isolated from Spanish dry-fermented sausages and screened for bacteriocin production. About 10% of the isolates produced antimicrobial substances when grown on solid media, but only 2% produced detectable activity in liquid media. Strain L50, identified as Pediococcus acidilactici, showed the strongest inhibitory activity and was active against members of all of the gram-positive genera tested. The strain produced a heat-stable bacteriocin when grown at 8 to 32 degrees C but not at 45 degrees C. The bacteriocin was purified to homogeneity. Its mass was determined to be 5,250.11 +/- 0.30 by electrospray mass spectrometry. The N terminus of the bacteriocin was blocked for sequencing by Edman degradation, but a partial sequence of 42 amino acids was obtained after cleavage of the peptide by cyanogen bromide. The sequence showed no similarity to those of other bacteriocins. Pediocin L50 appears to contain modified amino acids but not lanthionine or methyl-lanthionine.  相似文献   
9.
Polyclonal antibodies with specificity for enterocin L50A (EntL50A), enterocin L50B (EntL50B), and enterocin Q (EntQ) produced by Enterococcus faecium L50 have been generated by immunization of rabbits with chemically synthesized peptides derived from the C terminus of EntL50A (LR1) and EntL50B (LR2) and from the complete enterocin Q (EntQ) conjugated to the carrier protein keyhole limpet hemocyanin (KLH). The sensitivity and specificity of these antibodies were evaluated by a noncompetitive indirect enzyme-linked immunosorbent assay (NCI-ELISA) and a competitive indirect ELISA (CI-ELISA). The NCI-ELISA was valuable for detecting anti-EntL50A-, anti-EntL50B-, and anti-EntQ-specific antibodies in the sera of the LR1-KLH-, LR2-KLH-, and EntQ-KLH-immunized animals, respectively. Moreover, these antibodies and those specific for enterocin P (EntP) obtained in a previous work (J. Gutiérrez, R. Criado, R. Citti, M. Martín, C. Herranz, M. F. Fernández, L. M. Cintas, and P. E. Hernández, J. Agric. Food Chem. 52:2247-2255, 2004) were used in an NCI-ELISA to detect and quantify the production of EntL50A, EntL50B, EntP, and EntQ by the multiple-bacteriocin producer E. faecium L50 grown at different temperatures (16 to 47°C). Our results show that temperature has a strong influence on bacteriocin production by this strain. EntL50A and EntL50B are synthesized at 16 to 32°C, but production becomes negligible when the growth temperature is above 37°C, whereas EntP and EntQ are synthesized at temperatures ranging from 16 to 47°C. Maximum EntL50A and EntL50B production was detected at 25°C, while EntP and EntQ are maximally produced at 37 and 47°C, respectively. The loss of plasmid pCIZ1 (50 kb) and/or pCIZ2 (7.4 kb), encoding EntL50A and EntL50B as well as EntQ, respectively, resulted in a significant increase in production and stability of the chromosomally encoded EntP.  相似文献   
10.
Cerein 7B is a new bacteriocin produced simultaneously with cerein 7A by Bacillus cereus Bc7 in liquid brain heart infusion cultures. Both bacteriocins are not synergistic. The two peptides have been purified to homogeneity by hydrophobic interaction, cation exchange and reverse-phase liquid chromatography. They can be distinguished by their N-terminal amino acid sequences N-Gly-Trp-Gly-Asp-Val-Leu (7A) and N-Gly-Trp-Trp-Asn-Ser-Trp-Gly-Lys (7B). Pre-cerein 7B is 74 amino acids long and contains an 18 aminoacid double-glycine type leader sequence that is removed to produce the mature bacteriocin. The leader peptide sequence is related to that of sec-independent secretion signals suggesting that cerein 7B belongs to class II sec-independent bacteriocins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号