首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2015年   9篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  1981年   1篇
  1972年   1篇
  1961年   1篇
  1957年   1篇
  1954年   1篇
  1952年   1篇
  1938年   1篇
排序方式: 共有103条查询结果,搜索用时 375 毫秒
1.
Human lungs are constantly exposed to bacteria in the environment, yet the prevailing dogma is that healthy lungs are sterile. DNA sequencing-based studies of pulmonary bacterial diversity challenge this notion. However, DNA-based microbial analysis currently fails to distinguish between DNA from live bacteria and that from bacteria that have been killed by lung immune mechanisms, potentially causing overestimation of bacterial abundance and diversity. We investigated whether bacterial DNA recovered from lungs represents live or dead bacteria in bronchoalveolar lavage (BAL) fluid and lung samples in young healthy pigs. Live bacterial DNA was DNase I resistant and became DNase I sensitive upon human antimicrobial-mediated killing in vitro. We determined live and total bacterial DNA loads in porcine BAL fluid and lung tissue by comparing DNase I-treated versus untreated samples. In contrast to the case for BAL fluid, we were unable to culture bacteria from most lung homogenates. Surprisingly, total bacterial DNA was abundant in both BAL fluid and lung homogenates. In BAL fluid, 63% was DNase I sensitive. In 6 out of 11 lung homogenates, all bacterial DNA was DNase I sensitive, suggesting a predominance of dead bacteria; in the remaining homogenates, 94% was DNase I sensitive, and bacterial diversity determined by 16S rRNA gene sequencing was similar in DNase I-treated and untreated samples. Healthy pig lungs are mostly sterile yet contain abundant DNase I-sensitive DNA from inhaled and aspirated bacteria killed by pulmonary host defense mechanisms. This approach and conceptual framework will improve analysis of the lung microbiome in disease.  相似文献   
2.
The innate immune system is the first line of defense against invading pathogens. The retinoic acid‐inducible gene I (RIG‐I) like receptors (RLRs), RIG‐I and melanoma differentiation‐associated protein 5 (MDA5), are critical for host recognition of viral RNAs. These receptors contain a pair of N‐terminal tandem caspase activation and recruitment domains (2CARD), an SF2 helicase core domain, and a C‐terminal regulatory domain. Upon RLR activation, 2CARD associates with the CARD domain of MAVS, leading to the oligomerization of MAVS, downstream signaling and interferon induction. Unanchored K63‐linked polyubiquitin chains (polyUb) interacts with the 2CARD domain, and in the case of RIG‐I, induce tetramer formation. However, the nature of the MDA5 2CARD signaling complex is not known. We have used sedimentation velocity analytical ultracentrifugation to compare MDA5 2CARD and RIG‐I 2CARD binding to polyUb and to characterize the assembly of MDA5 2CARD oligomers in the absence of polyUb. Multi‐signal sedimentation velocity analysis indicates that Ub4 binds to RIG‐I 2CARD with a 3:4 stoichiometry and cooperatively induces formation of an RIG‐I 2CARD tetramer. In contrast, Ub4 and Ub7 interact with MDA5 2CARD weakly and form complexes with 1:1 and 2:1 stoichiometries but do not induce 2CARD oligomerization. In the absence of polyUb, MDA5 2CARD self‐associates to forms large oligomers in a concentration‐dependent manner. Thus, RIG‐I and MDA5 2CARD assembly processes are distinct. MDA5 2CARD concentration‐dependent self‐association, rather than polyUb binding, drives oligomerization and MDA5 2CARD forms oligomers larger than tetramer. We propose a mechanism where MDA5 2CARD oligomers, rather than a stable tetramer, function to nucleate MAVS polymerization.  相似文献   
3.

Objective

Multiple sclerosis is now more common among minority ethnic groups in the UK but little is known about their experiences, especially in advanced stages. We examine disease progression, symptoms and psychosocial concerns among Black Caribbean (BC) and White British (WB) people severely affected by MS.

Design

Mixed methods study of 43 BC and 43 WB people with MS (PwMS) with an Expanded Disability Status Scale (EDSS) ≥6 involving data from in clinical records, face-to-face structured interviews and a nested-qualitative component. Progression Index (PI) and Multiple Sclerosis Severity Score (MSSS) were calculated. To control for selection bias, propensity scores were derived for each patient and adjusted for in the comparative statistical analysis; qualitative data were analysed using the framework approach.

Results

Median EDSS for both groups was (6.5; range: 6.0–9.0). Progression Index (PI) and Multiple Sclerosis Severity Score (MSSS) based on neurological assessment of current EDSS scores identified BC PwMS were more likely to have aggressive disease (PI F = 4.04, p = 0.048, MSSS F = 10.30, p<0.001). Patients’ reports of the time required to reach levels of functional decline equivalent to different EDSS levels varied by group; EDSS 4: BC 2.7 years v/s WB 10.2 years (U = 258.50, p = 0.013), EDSS 6∶6.1 years BC v/s WB 12.7 years (U = 535.500, p = 0.011), EDSS 8: BC 8.7 years v/s WB 10.2 years. Both groups reported high symptom burden. BC PwMS were more cognitively impaired than WB PwMS (F = 9.65, p = 0.003). Thematic analysis of qualitative interviews provides correspondence with quantitative findings; more BC than WB PwMS referred to feelings of extreme frustration and unresolved loss/confusion associated with their rapidly advancing disease. The interviews also reveal the centrality, meanings and impact of common MS-related symptoms.

Conclusions

Delays in diagnosis should be avoided and more frequent reviews may be justified by healthcare services. Culturally acceptable interventions to better support people who perceive MS as an assault on identity should be developed to help them achieve normalisation and enhance self-identity.  相似文献   
4.
Mutations in BSCL2 underlie human congenital generalized lipodystrophy type 2 disease. We previously reported that Bscl2 −/− mice develop lipodystrophy of white adipose tissue (WAT) due to unbridled lipolysis. The residual epididymal WAT (EWAT) displays a browning phenotype with much smaller lipid droplets (LD) and higher expression of brown adipose tissue marker proteins. Here we used targeted lipidomics and gene expression profiling to analyze lipid profiles as well as genes involved in lipid metabolism in WAT of wild-type and Bscl2−/− mice. Analysis of total saponified fatty acids revealed that the residual EWAT of Bscl2−/− mice contained a much higher proportion of oleic18:1n9 acid concomitant with a lower proportion of palmitic16:0 acid, as well as increased n3- polyunsaturated fatty acids (PUFA) remodeling. The acyl chains in major species of triacylglyceride (TG) and diacylglyceride (DG) in the residual EWAT of Bscl2−/− mice were also enriched with dietary fatty acids. These changes could be reflected by upregulation of several fatty acid elongases and desaturases. Meanwhile, Bscl2−/− adipocytes from EWAT had increased gene expression in lipid uptake and TG synthesis but not de novo lipogenesis. Both mitochondria and peroxisomal β-oxidation genes were also markedly increased in Bscl2−/− adipocytes, highlighting that these machineries were accelerated to shunt the lipolysis liberated fatty acids through uncoupling to dissipate energy. The residual subcutaneous white adipose tissue (ScWAT) was not browning but displays similar changes in lipid metabolism. Overall, our data emphasize that, other than being essential for adipocyte differentiation, Bscl2 is also important in fatty acid remodeling and energy homeostasis.  相似文献   
5.
The bacterial fatty acid pathway is essential for membrane synthesis and a range of other metabolic and cellular functions. The β-ketoacyl-ACP synthases carry out the initial elongation reaction of this pathway, utilizing acetyl-CoA as a primer to elongate malonyl-ACP by two carbons, and subsequent elongation of the fatty acyl-ACP substrate by two carbons. Here we describe the structures of the β-ketoacyl-ACP synthase I from Brucella melitensis in complex with platencin, 7-hydroxycoumarin, and (5-thiophen-2-ylisoxazol-3-yl)methanol. The enzyme is a dimer and based on structural and sequence conservation, harbors the same active site configuration as other β-ketoacyl-ACP synthases. The platencin binding site overlaps with the fatty acyl compound supplied by ACP, while 7-hydroxyl-coumarin and (5-thiophen-2-ylisoxazol-3-yl)methanol bind at the secondary fatty acyl binding site. These high-resolution structures, ranging between 1.25 and 1.70 å resolution, provide a basis for in silico inhibitor screening and optimization, and can aid in rational drug design by revealing the high-resolution binding interfaces of molecules at the malonyl-ACP and acyl-ACP active sites.  相似文献   
6.
Transgenic Research - Expression of recombinant proteins in plants is a technology for producing vaccines, pharmaceuticals and industrial enzymes. For the past several years, we have produced...  相似文献   
7.
Aedes aegypti is the urban vector of dengue viruses worldwide. While climate influences the geographical distribution of this mosquito species, other factors also determine the suitability of the physical environment. Importantly, the close association of A. aegypti with humans and the domestic environment allows this species to persist in regions that may otherwise be unsuitable based on climatic factors alone. We highlight the need to incorporate the impact of the urban environment in attempts to model the potential distribution of A. aegypti and we briefly discuss the potential for future technology to aid management and control of this widespread vector species.  相似文献   
8.
Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.  相似文献   
9.
The β clamp is an essential replication sliding clamp required for processive DNA synthesis. The β clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of β clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49°C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49°C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the β clamp, a common site occupied by proteins that bind the β clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis β clamp separate the role of the β clamp in DNA replication from its role in MMR.Replication sliding clamps are essential cellular proteins imparting a spectacular degree of processivity to DNA polymerases during genome replication (24, 39-41). Encoded by the dnaN gene, the β clamp is a highly conserved bacterial sliding clamp found in virtually all eubacterial species (reviewed in reference 7). The β clamp is a head-to-tail, ring-shaped homodimer that encircles double-stranded DNA (1, 39). In eukaryotes and archaea, the analog of the β clamp is proliferating cell nuclear antigen (PCNA) (15, 28, 40, 41). Eukaryotic PCNA is a ring-shaped homotrimer that also acts to encircle DNA, increasing the processivity of the replicative DNA polymerases (40, 41). Although the primary structures of the β clamp and PCNA are not conserved, the tertiary structures of these proteins are very similar, demonstrating structural conservation among bacterial, archaeal, and eukaryotic replication sliding clamps (28, 39-41; reviewed in reference 6).The function of the β clamp is not limited to its well-defined role in genome replication. The Escherichia coli β clamp binds Hda, which also binds the replication initiation protein DnaA, regulating the active form of DnaA complexed with ATP (19, 37, 43). This allows the β clamp to regulate replication initiation through the amount of available DnaA-ATP. In Bacillus subtilis, the β clamp binds YabA, a negative regulator of DNA replication initiation (12, 29, 52). It has also been suggested that the B. subtilis β clamp sequesters DnaA from the replication origin during the cell cycle through the binding of DnaA to YabA and the binding of YabA to the β clamp (70). Thus, it is hypothesized that in E. coli and B. subtilis, the β clamp influences the frequency of replication initiation through interactions with Hda and YabA, respectively.The E. coli and B. subtilis β clamp has an important role in translesion DNA synthesis during the replicative bypass of noncoding bases by specialized DNA polymerases belonging to the Y family (20, 33). The roles of the E. coli β clamp in translesion synthesis are well established (5, 8, 30, 31). Binding sites on the E. coli β clamp that accommodate translesion polymerases pol IV (DinB) and pol V (UmuD2′C) have been identified, and the consequence of disrupting their association with the β clamp has illustrated the critical importance of the β clamp to the activity of both of these polymerases (4, 5, 8, 26, 30, 31, 48, 49).In addition to the involvement of the β clamp in replication initiation, DNA replication, and translesion synthesis, the E. coli and B. subtilis β clamp also functions in DNA mismatch repair (MMR) (45, 46, 64). The MMR pathway recognizes and repairs DNA polymerase errors, contributing to the overall fidelity of the DNA replication pathway (reviewed in references 42 and 60). In both E. coli and B. subtilis, deletion of the genes mutS and mutL increases the spontaneous mutation frequency several hundredfold (13, 25, 63). In E. coli, MutS recognizes and binds mismatches, while MutL functions as a “matchmaker,” coordinating the actions of other proteins in the MMR pathway, allowing the removal of the mismatch and resynthesis of the resulting gap (reviewed in references 42 and 60). MutS and MutL of E. coli and B. subtilis physically interact with the β clamp (45, 46, 51, 64). Interaction between the B. subtilis β clamp and MutS is important for efficient MMR and organization of MutS-green fluorescent protein (GFP) into foci in response to replication errors, while the function of MutL binding to the β clamp is unknown (64).These studies show that the β clamp is critical for several aspects of DNA metabolism in E. coli and B. subtilis. In E. coli, many dnaN alleles have been examined and used to define the mechanistic roles of the β clamp in vivo (5, 18, 24, 30, 31, 48, 49, 73). A limitation in studying the mechanistic roles of the B. subtilis β clamp is that only two dnaN alleles (β clamp) are available, dnaN5 and dnaN34 (36) (www.bgsc.org/), and both of these alleles do not support growth at temperatures above 49°C, suggesting that they may cause similar defects (36) (www.bgsc.org/). Of these two dnaN alleles, only dnaN5 has been investigated in any detail (36, 53, 64). The mutant β clamp encoded by dnaN5 contains a G73R substitution [dnaN5(G73R)] in a surface-exposed residue located on the outside rim of the β clamp (53, 64). Our previous studies with this allele showed that dnaN5(G73R) confers an increase in mutation frequency at 30°C and 37°C (64). Further characterization of dnaN5(G73R) showed that the increased mutation frequency is caused by a partial defect in MMR (64). Additionally, dnaN5(G73R)-containing cells have a reduced ability to support MutS-GFP focus formation in response to mismatches (64). These results support the hypothesis that G73R in the β clamp causes a defect in DNA replication at 49°C (36) and impaired MMR manifested by a defect in establishing the assembly of MutS-GFP foci in response to replication errors (64).To understand the roles of the B. subtilis β clamp in MMR and DNA replication, we examined the dnaN5 and dnaN34 alleles. We found that the nucleotide sequences of dnaN5 and dnaN34 and the phenotypes they produce were identical, both producing the G73R missense mutation. We analyzed in vivo β clampG73R protein levels and found that the β clampG73R protein accumulated to wild-type levels at elevated temperatures. To identify amino acid residues that would restore DNA replication at elevated temperatures, we isolated three intragenic suppressors of dnaN5(G73R) that conferred growth of B. subtilis cells at 49°C. Epistasis analysis and determination of the mutation spectrum showed that each dnaN allele isolated in this study caused an MMR-dependent increase in mutation frequency. Additionally, we found that the β clamp binding protein YabA can reduce the efficiency of MMR in vivo when yabA expression is induced. Thus, we have identified residues in the β clamp that are critical for DNA replication and MMR in B. subtilis. We also found that a β clamp binding protein, YabA, can reduce the efficiency of MMR in vivo.  相似文献   
10.
Single molecule force spectroscopy is a powerful approach to probe the structure, conformational changes, and kinetic properties of biological and synthetic macromolecules. However, common approaches to apply forces to biomolecules require expensive and cumbersome equipment and relatively large probes such as beads or cantilevers, which limits their use for many environments and makes integrating with other methods challenging. Furthermore, existing methods have key limitations such as an inability to apply compressive forces on single molecules. We report a nanoscale DNA force spectrometer (nDFS), which is based on a DNA origami hinge with tunable mechanical and dynamic properties. The angular free energy landscape of the nDFS can be engineered across a wide range through substitution of less than 5% of the strand components. We further incorporate a removable strut that enables reversible toggling of the nDFS between open and closed states to allow for actuated application of tensile and compressive forces. We demonstrate the ability to apply compressive forces by inducing a large bend in a 249bp DNA molecule, and tensile forces by inducing DNA unwrapping of a nucleosome sample. These results establish a versatile tool for force spectroscopy and robust methods for designing nanoscale mechanical devices with tunable force application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号