首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10180篇
  免费   893篇
  国内免费   2篇
  2023年   38篇
  2021年   137篇
  2020年   110篇
  2019年   117篇
  2018年   141篇
  2017年   142篇
  2016年   222篇
  2015年   452篇
  2014年   443篇
  2013年   609篇
  2012年   762篇
  2011年   704篇
  2010年   427篇
  2009年   378篇
  2008年   583篇
  2007年   632篇
  2006年   585篇
  2005年   518篇
  2004年   496篇
  2003年   481篇
  2002年   465篇
  2001年   95篇
  2000年   93篇
  1999年   116篇
  1998年   118篇
  1997年   77篇
  1996年   84篇
  1995年   120篇
  1994年   57篇
  1993年   89篇
  1992年   75篇
  1991年   74篇
  1990年   62篇
  1989年   53篇
  1988年   46篇
  1987年   59篇
  1986年   57篇
  1985年   65篇
  1984年   68篇
  1983年   69篇
  1982年   81篇
  1981年   69篇
  1980年   63篇
  1979年   34篇
  1978年   60篇
  1977年   54篇
  1976年   44篇
  1975年   39篇
  1974年   43篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.  相似文献   
2.
3.
4.
5.
New- and old-world tropical electric fish lack a common electrical ancestor, suggesting that the mechanisms of signal generation and recognition evolved independently in the two groups. Recent research on convergent designs for electrogenesis and electroreception has focused on the structure of electric organs, the neural circuitry controlling the pacemaker driving the electric organ, and the neural circuitry underlying time coding of electric waveforms.  相似文献   
6.
The plastic response of phenotypic traits to environmental change is a common research focus in several disciplines - from ecology and evolutionary biology to physiology and molecular genetics. The use of model systems such as the flowering plant Arabidopsis thaliana has facilitated a dialogue between developmental biologists asking how plasticity is controlled (proximate causes) and organismal biologists asking why plasticity exists (ultimate causes). Researchers studying ultimate causes and consequences are increasingly compelled to reject simplistic, ‘black box’ models, while those studying proximate causes and mechanisms are increasingly obliged to subject their interpretations to ecological ‘reality checks.’ We review the successful multidisciplinary efforts to understand the phytochrome-mediated shade-avoidance and light-seeking responses of flowering plants as a pertinent example of convergence between evolutionary and molecular biology. In this example, the two-way exchange between reductionist and holist camps has been essential to rapid and sustained progress. This should serve as a model for future collaborative efforts towards understanding the responses of organisms to their constantly changing environments.  相似文献   
7.
8.
In cohort studies the outcome is often time to a particular event, and subjects are followed at regular intervals. Periodic visits may also monitor a secondary irreversible event influencing the event of primary interest, and a significant proportion of subjects develop the secondary event over the period of follow‐up. The status of the secondary event serves as a time‐varying covariate, but is recorded only at the times of the scheduled visits, generating incomplete time‐varying covariates. While information on a typical time‐varying covariate is missing for entire follow‐up period except the visiting times, the status of the secondary event are unavailable only between visits where the status has changed, thus interval‐censored. One may view interval‐censored covariate of the secondary event status as missing time‐varying covariates, yet missingness is partial since partial information is provided throughout the follow‐up period. Current practice of using the latest observed status produces biased estimators, and the existing missing covariate techniques cannot accommodate the special feature of missingness due to interval censoring. To handle interval‐censored covariates in the Cox proportional hazards model, we propose an available‐data estimator, a doubly robust‐type estimator as well as the maximum likelihood estimator via EM algorithm and present their asymptotic properties. We also present practical approaches that are valid. We demonstrate the proposed methods using our motivating example from the Northern Manhattan Study.  相似文献   
9.
The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis.  相似文献   
10.
The amount of tissue-specific expression variability (EV) across individuals is an essential characteristic of a gene and believed to have evolved, in part, under functional constraints. However, the determinants and functional implications of EV are only beginning to be investigated. Our analyses based on multiple expression profiles in 41 primary human tissues show that a gene’s EV is significantly correlated with a number of features pertaining to the genomic, epigenomic, regulatory, polymorphic, functional, structural and network characteristics of the gene. We found that (i) EV of a gene is encoded, in part, by its genomic context and is further influenced by the epigenome; (ii) strong promoters induce less variable expression; (iii) less variable gene loci evolve under purifying selection against copy number polymorphisms; (iv) genes that encode inherently disordered or highly interacting proteins exhibit lower variability; and (v) genes with less variable expression are enriched for house-keeping functions, while genes with highly variable expression tend to function in development and extra-cellular response and are associated with human diseases. Thus, our analysis reveals a number of potential mediators as well as functional and evolutionary correlates of EV, and provides new insights into the inherent variability in eukaryotic gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号