首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chinook salmon (Oncorhynchus tshawytscha) ova contain a lectin that agglutinated human type B and rabbit erythrocytes and was specifically inhibited by the monosaccharides d-galactose and l-rhamnose. The lectin purified from homogenates of the ova by affinity chromatography on agarose possessed a pI of 4.5 in isoelectric focusing studies. The purified lectin inhibited the growth of four bacterial fish pathogens.  相似文献   

2.
·
Juvenile Chinook salmon Oncorhynchus tshawytscha survival and behaviour were evaluated during a temperature increase from 8.8 to 23.2 °C.  相似文献   

3.
We used ultrasonic telemetry to describe the movement patterns of late-fall run Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (O. mykiss) smolts during their entire emigration down California’s Sacramento River, through the San Francisco Bay Estuary and into the Pacific Ocean. Yearling hatchery smolts were tagged via intracoelomic surgical implantation with coded ultrasonic tags. They were then released at four upriver locations in the Sacramento River during the winters of 2007 through 2010. Late-fall run Chinook salmon smolts exhibited a nocturnal pattern of migration after release in the upper river. This is likely because individuals remain within a confined area during the day, while they become active at night and migrate downstream. The ratio between night and day detections of Chinook salmon smolts decreased with distance traveled downriver. There was a significant preference for nocturnal migration in every reach of the river except the Estuary. In contrast, steelhead smolts, which reside upriver longer following release, exhibited a less pronounced diel pattern during their entire migration. In the middle river, Delta, and Estuary, steelhead exhibited a significant preference for daytime travel. In the ocean Chinook salmon preferred to travel at night, yet steelhead were detected on the monitors equally during the night and day. These data show that closely related Oncorhynchus species, with the same ontogenetic pattern of out-migrating as yearlings, vary in migration tactic.  相似文献   

4.
Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.  相似文献   

5.
We investigated habitat use by juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) to identify environmental characteristics that may define their optimal marine habitat. We utilized physical and biological data from four cruises in the northern California Current system from Newport, Oregon, to Crescent City, California, in June and August 2000 and 2002. A non-parametric statistical method was used to analyze and select environmental parameters that best defined ocean habitat for each species. Regression trees were generated for all cruises combined to select the most important habitat variables. Chlorophyll a concentration best defined habitat of yearling Chinook salmon, while decapod larvae, salinity, and neuston biovolume defined habitat of yearling coho salmon. Using criteria from the regression tree analysis, GIS maps were produced to show that the habitat of yearling Chinook salmon was widespread over the continental shelf and the habitat of yearling coho salmon was variable and mainly north of Cape Blanco.  相似文献   

6.
The Chinook salmon Oncorhynchus tshawytscha, which was introduced deliberately in Chile four decades ago for sport fishing and aquaculture, represents a rare example of a successful translocation of an anadromous Pacific salmon into the southern Hemisphere, offering a unique opportunity to examine the role of introduction history and genetic variability in invasion success. We used historical information and mitochondrial displacement loop sequences (D-loop) from seven colonized sites in Chile and Argentina and from native and naturalized Chinook salmon populations to determine population sources and to examine levels of genetic diversity associated with the invasion. The analysis revealed that the Chinook salmon invasion in Patagonia originated from multiple population sources from northwestern North America and New Zealand, and admixed in the invaded range generating genetically diverse populations. Genetic analyses further indicated that the colonization of new populations ahead of the invasion front appear to have occurred by noncontiguous dispersal. Dispersal patterns coincided with ocean circulation patterns dominated by the West Wind Drift and the Cape Horn Currents. We conclude that admixture following multiple introductions, as well as long-distance dispersal events may have facilitated the successful invasion and rapid dispersal of Chinook salmon into Patagonia.  相似文献   

7.
Oligotrophication has negatively affected fisheries production in many freshwater ecosystems and could conceivably reduce the efficacy of stockings used to enhance fisheries. In Lake Michigan, offshore oligotrophication has occurred since the 1970s, owing to reductions in total phosphorus (TP) inputs and nearshore sequestration of TP by nonindigenous dreissenid mussels. We evaluated simultaneous effects of stock enhancement and oligotrophication on salmonine species (Chinook salmon Oncorhynchus tshawytscha, lake trout Salvelinus namaycush, and steelhead O. mykiss) that support valuable recreational fisheries. We employed a novel application of an Ecopath with Ecosim model by conducting a full factorial simulation experiment. Our design included multiple levels of salmonine stocking, consumption by invasive quagga mussels (Dreissena bugensis), and TP that were informed by manager interests. Under all levels of TP and quagga mussel consumption, our results showed that stock enhancement could still increase salmonine biomass, but positive responses were stronger for lake trout and steelhead than Chinook salmon. Simulations showed that quagga mussel consumption has deleterious effects on pelagic-oriented prey fishes and Chinook salmon, which feed almost exclusively on the pelagic-oriented alewife (Alosa pseudoharengus). In summary, results from our simulation experiment suggested that lake trout and steelhead are better suited to the current ecosystem than Chinook salmon, and therefore, stock enhancement provides the highest gains for these two species. Furthermore, simulated biomass of all recreational salmonine species increased with increasing TP, indicating the need for managers to consider how potential future oligotrophication will limit the carrying capacity of salmonine biomass in Lake Michigan.  相似文献   

8.

Population declines and demographic changes of Chinook salmon (Oncorhynchus tshawytscha), have been documented throughout this species’ range, though information on natural and anthropogenic mechanisms related to these changes are not fully understood. To provide insights into marine behaviors and survival of Chinook salmon, 40 pop-up satellite archival tags (PSATs), that collected environmental data, were attached to large (69–100 cm FL) Chinook salmon caught in the marine waters of Cook Inlet, Alaska. PSATs provided evidence of predation on tagged Chinook salmon by ectothermic and unconfirmed predators, and provided valuable information about the migratory characteristics and occupied depths and temperatures of this species while occupying Cook Inlet and the Gulf of Alaska. The results from this study suggest that late-marine mortality of Chinook salmon of a variety of stock-origins by apex predators is more common in Cook Inlet than previously thought, and may be used to improve our understanding this species’ population dynamics. Furthermore, results from this study adds to the existing knowledge of marine habitat use by Chinook Salmon and may be useful in assessing the vulnerability and interactions between this species and anthropogenic activities.

  相似文献   

9.
One of the strategies that can be used to reduce predation impacts to valued fish species is by swamping predators with more prey than they can eat. We examined whether this approach was viable by calculating the maximum bioenergetic consumption potential of non-native smallmouth bass Micropterus dolomieu on fall Chinook salmon Oncorhynchus tshawytscha juveniles in the Yakima River throughout the spring between 1998 and 2002 and comparing those estimates to previously published estimates of fall Chinook salmon consumption. We found that the smallmouth bass population consumed fall Chinook salmon well below their bioenergetic potential. However, individual smallmouth bass that were piscivorous were eating other food items at a level near satiation. Furthermore, the maximum consumption potential was relatively low prior to mid-April, and then increased substantially to a peak in May. Predation mortality to hatchery fall Chinook salmon could be reduced within a year by releasing hatchery fall Chinook salmon that will emigrate quickly prior to mid-April, when predation potential is still very low. However, attempting to swamp predators with hatchery Chinook salmon to benefit naturally produced Chinook salmon poses uncertain benefits to natural origin fish and likely unacceptable costs to hatchery fish. Considerable swamping is occurring by other naturally produced fish species in the Yakima River such as dace Rhinichthys spp., mountain whitefish Prosopium williamsoni, and crayfish Pacificastus spp. Therefore, it is important to consider impacts to these non-target species because they could have indirect predation impacts on Chinook salmon.  相似文献   

10.
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi‐national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.  相似文献   

11.
The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.  相似文献   

12.
Flavobacterial diseases, caused by multiple members of the Family Flavobacteriaceae, elicit serious losses in wild and farmed fish around the world. Flavobacteria are known to be transmitted horizontally; however, vertical transmission has been suspected but proven only for one fish-pathogenic flavobacterial species (e.g., Flavobacterium psychrophilum). Herein, we report on the isolation and molecular identification of multiple Flavobacterium and Chryseobacterium taxa from the ovarian fluid and eggs of feral Great Lakes Chinook salmon (Oncorhynchus tshawytscha). Identified egg- and ovarian fluid-associated flavobacteria were either well-known flavobacterial fish pathogens (e.g., F. psychrophilum and F. columnare), most similar to emerging fish-associated flavobacteria (e.g., F. spartansii, F. tructae, F. piscis, C. piscium, C. scophthalmum), or were distinct from all other described Chryseobacterium and Flavobacterium spp., as determined by phylogenetic analyses using neighbor-joining, Bayesian, and Maximum Likelihood methodologies. The gamete-associated flavobacteria fell into three groups (e.g., those that were recovered from the ovarian fluid but not eggs; those that were recovered from the ovarian fluid and eggs; and those that were recovered from eggs but not ovarian fluid), a portion of which were recovered from eggs that were surface disinfected with iodophor at the commonly used dose and duration for egg disinfection. Some gamete-associated flavobacteria were also found in renal, splenic, and neurological tissues. Systemic polymicrobial infections comprised of F. psychrophilum and F. columnare were also detected at nearly an 11% prevalence. This study highlights the potential role that sexual products of female Great Lakes Chinook salmon may play in the transmission of fish-associated flavobacteria.  相似文献   

13.
Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.  相似文献   

14.
We evaluated reproductive isolation of Chinook salmon (Oncorhynchus tshawytscha) life history types that have been reintroduced to northern Idaho, USA. Analysis of 1003 samples at six microsatellite loci revealed strong reproductive isolation between ocean- and stream-type Chinook salmon (fall and summer spawn timing, respectively) within the Clearwater River sub-basin (F ST = 0.148, P < 0.00001). Very little evidence for gene flow among the two life history types was observed as assignment tests correctly assigned 99.6% of individuals in reference collections to either ocean- and steam-type Chinook salmon. Assignment of naturally reared juveniles indicated that both life history types were present with 24.1% stream-type and 75.9% ocean-type. Previous studies suggest high levels of divergence among the two life history types in natural populations, and our study verifies the persistence of reproductive isolation among types following colonization of habitat. Successful colonization of new habitat by (re)introduced species is likely influenced by diversity in life history types and this strategy has lead to naturally spawning populations in a variety of available habitats in the Clearwater River. As many populations of O. tshawytscha are listed as threatened or endangered under the U.S. Endangered Species Act, hope for recovery lies not only in effective management and habitat improvement, but adaptability of this species.  相似文献   

15.
By combining biotelemetry with animal-borne thermal loggers, we re-created the thermal histories of 21 summer-run Chinook salmon (Oncorhynchus tshawytscha) migrating in the Puntledge River, a hydropower impacted river system on Vancouver Island, British Columbia, Canada. Daily maximum water temperatures in the Puntledge River during the summer-run adult Chinook salmon migration and residency period frequently exceeded 21 °C, a value that has been observed to elicit behavioral thermoregulation in other Chinook salmon populations. We therefore compared river temperatures to body temperatures of 16 fish that migrated through the river to understand if cool-water refuge was available and being used by migrants. In addition, we used thermal histories from fish and thermal loggers distributed in the river to model the effect of thermal habitat on energy density using a bioenergetics model. In general, we found no evidence that cool-water refuge existed in the river, suggesting that there is no opportunity for fish to behaviorally thermoregulate during upriver migration through the regulated portion of the river. Of the thermal histories used in the bioenergetics model, fish that reached an upstream lake were able to access cooler, deeper waters, which would have reduced energy consumption compared to fish that only spent time in the warmer river. Consequently, the Puntledge River water temperatures are likely approaching and in some cases exceeding the thermal limits of the summer-run Chinook salmon during the spawning migration. Further warming may cause more declines in the stock.  相似文献   

16.
The influence of surgical implantation of an acoustic transmitter on the swimming performance, growth and survival of juvenile sockeye salmon Oncorhynchus nerka and Chinook salmon Oncorhynchus tshawytscha was examined. The transmitter had a mass of 0·7 g in air while sockeye salmon had a mass of 7·0–16·0 g and Chinook salmon had a mass of 6·7–23·1 g (a transmitter burden of 4·5–10·3% for sockeye salmon and 3·1–10·7% for Chinook salmon). Mean critical swimming speeds (Ucrit) for Chinook salmon ranged from 47·5 to 51·2 cm s?1 [4·34–4·69 body lengths (fork length, LF) s?1] and did not differ among tagged, untagged and sham‐tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46·1 cm s?1 (4·1 LF s?1), which was c. 5% less than the mean Ucrit for control and sham fish (both groups were 48·6 cm s?1 or 4·3 LF s?1). A laboratory evaluation determined that there was no difference in LF or mass among treatments (control, sham or tag) either at the start or at the end of the test period, suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon held under laboratory conditions died from the influence of surgical implantation of transmitters. In contrast, this study found that the 21 day survival differed between tagged and control groups of Chinook salmon, although this result may have been confounded by the poor health of Chinook salmon treatment groups.  相似文献   

17.
The myxozoan parasite Ceratomyxa shasta infects salmonids causing ceratomyxosis, a disease elicited by proliferation of the parasite in the intestine. This parasite is endemic to the Pacific Northwest of North America and salmon and trout strains from endemic river basins show increased resistance to the parasite. It has been suggested that these resistant fish (i) exclude the parasite at the site of invasion and/or (ii) prevent establishment in the intestine. Using parasites pre-labeled with a fluorescent stain, carboxyfluorescein succinimidyl diacetate (CFSE), the gills were identified as the site of attachment of C. shasta in a susceptible fish strain. In situ hybridization (ISH) of histological sections was then used to describe the invasion of the parasites in the gill filaments. To investigate differences in the progress of infection between resistant and susceptible fish, a C. shasta-susceptible strain of rainbow trout (Oncorhynchus mykiss) and a C. shasta-resistant strain of Chinook salmon (Oncorhynchus tshawytscha) were sampled at consecutive time points following exposure at an endemic site. Using ISH in both species, the parasite was observed to migrate from the gill epithelium into the gill blood vessels where replication and release of parasite stages occurred. Quantitative PCR verified entry of the parasite into the blood. Parasite levels in blood increased 4 days p.i. and remained at a consistent level until the second week when parasite abundance increased further and coincided with host mortality. The timing of parasite replication and migration to the intestine were similar for both fish species. The field exposure dose was unexpectedly high and apparently overwhelmed the Chinook salmon’s defenses, as no evidence of resistance to parasite penetration into the gills or prevention of parasite establishment in the intestine was observed.  相似文献   

18.
Management and restoration planning for Pacific salmon is often characterized by efforts at broad multi-basin scales. However, finer-scale genetic and phenotypic variability may be present within individual basins and can be overlooked in such efforts, even though it may be a critical component for long-term viability. Here, we investigate Chinook salmon (Oncorhynchus tshawytscha) within the Siletz River, a small coastal watershed in Oregon, USA. Adult Chinook salmon were genotyped using neutral microsatellite markers, single nucleotide polymorphisms and “adaptive” loci, associated with temporal variation in migratory behavior in many salmon populations, to investigate genetic diversity based upon both spatial and temporal variation in migratory and reproductive behavior. Results from all three marker types identified two genetically distinct populations in the basin, corresponding to early returning fish that spawn above a waterfall, a spring-run population, and later returning fish spawning below the waterfall, a fall-run population. This finding is an important consideration for management of the species, as spring-run populations generally only have been recognized in large watersheds, and highlights the need to evaluate population structure of salmon within smaller watersheds, and thereby increase the probability of successful conservation of salmon species.  相似文献   

19.
Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165?km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p?<?0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.  相似文献   

20.
Out-migrating juvenile Chinook Salmon Oncorhynchus tshawytscha in California’s Central Valley lack frequent access to historical off-channel habitats such as floodplains. However, many regions have agricultural floodplains that may provide habitat value to young salmon. To determine the suitability of agricultural floodplain, this study tested whether winter-inundated rice fields in a historic flood basin in California’s Central Valley could provide adequate food resources for rearing juvenile Chinook Salmon. We examined the suitability of flooded rice fields for three post-harvest habitat types: stubble, fallow, and disced. Soil emergent and pelagic zooplankton communities were compared to determine colonization sources. Winter-inundated rice fields had high densities of zooplankton, which increased over the course of the study. Daphnia pulex, a large-bodied cladoceran and an excellent forage species of juvenile Chinook Salmon, was abundant in our study. Cladocerans colonized via source water while ostracods likely colonized from a soil egg bank. Overall, there was no discernable effect of habitat type on zooplankton community structure or density, except for D. pulex. Our results suggest that flooded agricultural rearing habitat can support juvenile Chinook Salmon based on high densities of zooplankton and other suitable habitat conditions have the potential to support a robust aquatic food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号