首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24682篇
  免费   2333篇
  国内免费   618篇
  2023年   137篇
  2022年   138篇
  2021年   507篇
  2020年   417篇
  2019年   520篇
  2018年   662篇
  2017年   503篇
  2016年   824篇
  2015年   1329篇
  2014年   1424篇
  2013年   1669篇
  2012年   1973篇
  2011年   1913篇
  2010年   1210篇
  2009年   1004篇
  2008年   1351篇
  2007年   1295篇
  2006年   1172篇
  2005年   1065篇
  2004年   994篇
  2003年   931篇
  2002年   794篇
  2001年   639篇
  2000年   562篇
  1999年   506篇
  1998年   231篇
  1997年   220篇
  1996年   193篇
  1995年   183篇
  1994年   157篇
  1993年   126篇
  1992年   252篇
  1991年   251篇
  1990年   208篇
  1989年   220篇
  1988年   192篇
  1987年   156篇
  1986年   145篇
  1985年   170篇
  1984年   125篇
  1983年   100篇
  1982年   92篇
  1981年   98篇
  1979年   110篇
  1978年   91篇
  1977年   71篇
  1976年   70篇
  1975年   89篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
Craniofacial bone defects are observed in a variety of clinical situations, and their reconstructions require coordinated coupling between angiogenesis and osteogenesis. In this study, we explored the effects of cartilage oligomeric matrix protein-angiopoietin 1 (COMP-Ang1), a synthetic and soluble variant of angiopoietin 1, on bone morphogenetic protein 2 (BMP2)-induced cranial bone regeneration, and recruitment and osteogenic differentiation of perivascular pericytes. A critical-size calvarial defect was created in the C57BL/6 mouse and COMP-Ang1 and/or BMP2 proteins were delivered into the defects with absorbable collagen sponges. After 3 weeks, bone regeneration was evaluated using micro-computed tomography and histologic examination. Pericyte recruitment into the defects was examined using immunofluorescence staining with anti-NG2 and anti-CD31 antibodies. In vitro recruitment and osteoblastic differentiation of pericyte cells were assessed with Boyden chamber assay, staining of calcified nodules, RT-PCR and Western blot analyses. Combined administration of COMP-Ang1 and BMP2 synergistically enhanced bone repair along with the increased population of CD31 (an endothelial cell marker) and NG2 (a specific marker of pericyte) positive cells. In vitro cultures of pericytes consistently showed that pericyte infiltration into the membrane pore of Boyden chamber was more enhanced by the combination treatment. In addition, the combination further increased the osteoblast-specific gene expression, including bone sialoprotein (BSP), osteocalcin (OCN) and osterix (OSX), phosphorylation of Smad/1/5/8, and mineralized nodule formation. COMP-Ang1 can enhance BMP2-induced cranial bone regeneration with increased pericyte recruitment. Combined delivery of the proteins might be a therapeutic strategy to repair cranial bone damage.  相似文献   
2.
There is evidence that telomere length (TL), telomerase activity (TA), and age are related to the replicative potential of human nucleus pulposus chondrocytes (NPCs). However, it has not yet been established if any of these factors can serve as predictors of the replicative potential of NPCs. To establish predictors of the replicative potential of NPCs, we evaluated potential relationships between replicative capacity of NPCs, initial TL (telomere length at the first passage), initial TA (telomerase activity at the first passage), and age. Nucleus pulposus specimens were obtained from 14 patients of various ages undergoing discectomy. NPCs were serially cultivated until the end of their replicative lifespans. Relationships among cumulative population doubling level (PDL), initial TL, initial TA, and age were analyzed. Initial TA was negatively correlated with age (r = -0.674, P = 0.008). However, no correlation between initial TL and age was observed. Cumulative PDL was also negatively correlated with age (r = -0.585, P = 0.028). Although the cumulative PDL appeared to increase with initial TL or initial TA, this trend was not statistically significant. In conclusion, age is the sole predictor of the replicative potential of human NPCs, and replicative potential decreases with age. Initial TL and initial TA are not predictors of replicative potential, and can serve only as reference values.  相似文献   
3.
4.
Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.  相似文献   
5.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
6.
The hydrolysis of sunflower oil using Candida cylindracea lipase in reversed micelles of AOT/isooctane was investigated. The inhibition caused by substrate and hydrolysis products has been found in the process of reaction. It was revealed that the extent of inhibition caused by oleic acid was higher than that caused by glycerol, and was much more serious in the case of the mixture of hydrolysis products. Moreover, with the initial addition of glycerol into the reaction mixture, the stability of lipase could be increased during the hydrolysis of sunflower oil in reversed micelles. We thank the National Natural Science Foundation of China for the financial support of this work. We also thank Prof. Xu, Jia-li for his contributions to this work.  相似文献   
7.
8.
9.
10.
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号