首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1998年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The acclimation of photosynthesis and metabolism in response to water deficit is characterized using hydroponically grown potato plants (Solanum tuberosum cv. Désirée). Plants were subjected to a reduced water potential of the nutrient solution by adding 10% (w/v) PEG 6000. PEG-treated plants were retarded in growth. Leaves which had been fully developed before the PEG treatment and leaves grown during the PEG treatment showed different phenotypes and biochemical and physiological properties. Photosynthesis of all leaves decreased during the whole treatment. However, the decrease of photosynthesis in the two types of leaves had different causes indicated by differences in their metabolism. Leaves which were fully developed at the beginning of the PEG treatment began to wilt starting from the leaf rim. The apoplastic ABA content increased, coinciding with a decreased stomatal conductance. Increased energy charge of the cells indicated impaired chloroplastic metabolism, accompanied by a decrease of amounts of chloroplastic enzymes. The apoplastic and the symplastic ABA content were increased during water deficit and because ABA was concentrated in the cytosolic compartment it is suggested that ABA is involved in decreasing photosynthetic enzyme contents in old leaves. Young leaves, grown after the imposition of water deficit, were smaller than control leaves and had a curly surface. In young leaves apoplastic and cytosolic ABA contents were identical with control values. Carboxylation efficiency of photosynthesis was decreased, but the water use efficiency remained unchanged. Metabolic data of the photosynthetic pathways indicate a down-regulation of chloroplastic metabolism. It is concluded that in young leaves photosynthesis was non-stomatally limited. This limitation was not caused by ABA.  相似文献   
2.
Potato plants (Solanum tuberosum cv. Désirée) were grown hydroponically and subjected to water deficit induced by addition of 10% (w/v) PEG 6000. The potato plants were able to grow under water deficit by accumulating organic solutes (osmoregulation). Osmoregulation occurred in two phases. During the initial 2d hexoses were accumulated, and after 7 d of PEG treatment osmotic adjustment was mostly due to the accumulation of amino acids, especially proline, which accumulated up to 150 times the control content. Sucrose contents remained unchanged in leaves of PEG-treated plants compared with controls, whereas the starch content decreased during PEG treatment.In control leaves, the hexoses and malate were compartmented in the vacuole and sucrose was found in the cytosol and vacuole. Amino acids were distributed between the cytosol and stroma, but only minor amounts of amino acids could be detected in the vacuole. Under water deficit the subcellular distribution of hexoses, malate and sucrose remained unchanged. Most amino acids showed a slight to moderate higher concentration in the vacuole under water deficit. Proline, the metabolite contributing mainly to osmoregulation, was concentrated mostly in the chloroplast and the cytosol. This underlines the important role of proline as the osmolyte under water deficit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号