首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   4篇
  2020年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   3篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The role of cell wall synthesis in sustained auxin-induced growth   总被引:2,自引:0,他引:2  
The dependence of auxin-induced growth on continued cell wall synthesis was investigated in stem segments of etiolated pea ( Pisum sativum L. cv. Alaska) seedlings using the cell wall synthesis inhibitors monensin and 2,6-dichlorobenzonitrile (DCB). Monensin (5 μ M ) potently inhibited indole-3-acetic acid (IAA)-induced growth, particularly during the second hour of treatment, whereas growth in fusicoccin (FC) was inhibited much less effectively. Incorporation of [14C]-glucose into both matrix and cellulose fractions of the wall showed a sharp increase beginning after about 60 min, this rise being promoted by both IAA and FC. Monensin inhibited this rise in incorporation of label and completely removed the promotion of this by IAA, although some promotion by FC remained. Monensin inhibited incorporation into cellulose in a manner similar to that into matrix, but the use of the apparently specific cellulose synthesis inhibitor DCB showed that cellulose synthesis could be strongly inhibited without effect on growth, at least in the short term. The results support the view that sustained auxin-induced growth depends upon the incorporation of new matrix cell wall components into the wall.  相似文献   
2.
Galactose was the major non-cellulosic neutral sugar present in the cell walls of ‘Mitchell’ petunia (Petunia axillaris × P. axillaris × P. hybrida) flower petals. Over the 24 h period associated with flower opening, there was a doubling of the galactose content of polymers strongly associated with cellulose and insoluble in strong alkali (‘residual’ fraction). By two days after flower opening, the galactose content of both the residual fraction and a Na2CO3-soluble pectin-rich cell wall fraction had sharply decreased, and continued to decline as flowers began to wilt. In contrast, amounts of other neutral sugars showed little change over this time, and depolymerisation of pectins and hemicelluloses was barely detectable throughout petal development. Size exclusion chromatography of Na2CO3-soluble pectins showed that there was a loss of neutral sugar relative to uronic acid content, consistent with a substantial loss of galactose from rhamnogalacturonan-I-type pectin. β-Galactosidase activity (EC 3.2.1.23) increased at bud opening, and remained high through to petal senescence. Two cDNAs encoding β-galactosidase were isolated from a mixed stage petal library. Both deduced proteins are β-galactosidases of Glycosyl Hydrolase Family 35, possessing lectin-like sugar-binding domains at their carboxyl terminus. PhBGAL1 was expressed at relatively high levels only during flower opening, while PhBGAL2 mRNA accumulation occurred at lower levels in mature and senescent petals. The data suggest that metabolism of cell wall-associated polymeric galactose is the major feature of both the opening and senescence of ‘Mitchell’ petunia flower petals.  相似文献   
3.
Nicotiana tabacum L. (tobacco) plants were transformed to overexpress a selenocysteine methyltransferase gene from the selenium hyperaccumulator Astragalus bisulcatus (Hook.) A. Gray (two-grooved milkvetch), and an ATP-sulfurylase gene from Brassica oleracea L. var. italica (broccoli). Solvent extraction of leaves harvested from plants treated with selenate revealed five selenium-containing compounds, of which four were identified by chemical synthesis as 2-(methylseleno)acetaldehyde, 2,2-bis(methylseleno)acetaldehyde, 4-(methylseleno)-(2E)-nonenal, and 4-(methylseleno)-(2E,6Z)-nonadienal. These four compounds have not previously been reported in nature.  相似文献   
4.
5.
Plant developmental processes involving modifications to cell wall structure, such as cell expansion, organ abscission and fruit ripening, are accompanied by increased enzyme activity and mRNA abundance of endo-1,4--glucanases (EGases). An EGase cDNA clone, Ce14, isolated from tomato (Lycopersicon esculentum) has been shown to be identical to a tomato pistil-predominant EGase cDNA, TPP18. In addition to its previously reported expression during certain stages of early pistil development, Ce14 mRNA was also detected at high levels in the growing zones of etiolated hypocotyls (about 2.5-fold less than in pistils) and in young expanding leaves (about 3.5-fold less than in pistils). The abundance of Ce14 mRNA declined precipitously in older tissues as cells became fully expanded, and was barely detectable in mature vegetative tissues. Ce14 mRNA abundance was also low in abscission zones, and did not increase as abscission progressed. In fruit, Ce14 mRNA was present at low levels during fruit expansion, but was essentially absent during subsequent fruit development and ripening. Treatment of etiolated hypocotyls with ethylene or high concentrations of auxin sufficient to induce rapid lateral cell expansion and hypocotyl swelling also brought about an approximate doubling of Ce14 mRNA abundance, suggesting that Ce14 mRNA accumulation may be promoted directly or indirectly by ethylene. Thus, accumulation of Ce14 mRNA was found to be correlated with rapid cell expansion in pistils, hypocotyls and leaves.  相似文献   
6.
Fruit of tomato (Lycopersicon esculentum Mill.) in which endopolygalacturonase (PG) activity had been suppressed to <1% of wild-type levels were slightly firmer than nontransgenic controls later in ripening. Enzymically inactive cell walls were prepared from these ripening fruit using Tris-buffered phenol. When extracted with chelator followed by Na2CO3, the amounts of pectin solubilized from cell walls of nontransgenic control or from transgenic antisense PG fruit were similar. Size-exclusion chromatography analysis showed that, relative to controls, in antisense PG fruit polyuronide depolymerization was delayed in the chelator-soluble fraction throughout ripening and reduced in the Na2CO3-soluble fraction at the overripe stage. Reduced pectin depolymerization rather than altered extractability thus may have contributed to enhanced fruit firmness. Substantially larger effects of suppressed PG activity were detected in tomato fruit homogenates processed to paste. In control paste the majority of the polyuronide was readily soluble in water and was very highly depolymerized. In antisense PG paste the proportion of polyuronide solubilized by water was reduced, and polyuronides retained a high degree of polymerization. The suppression of fruit PG activity thus has a small effect on polyuronide depolymerization in the fruit but a much larger effect in paste derived from these fruit. This indicates that in the cell wall PG-mediated degradation of polyuronide is normally restricted but that in tissue homogenates or in isolated cell walls this restriction is removed and extensive pectin disassembly results unless PG is inactivated.  相似文献   
7.
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening.  相似文献   
8.
David A. Brummell  J. L. Hall 《Planta》1980,150(5):371-379
The effects of peeling and wounding on the indole-3-acetic acid (IAA) and fusicoccin (FC) growth response of etiolated Pisum sativum L. cv. Alaska stem tissue were examined. Over a 5 h growth period, peeling was found to virtually eliminate the IAA response, but about 30% of the FC response remained. In contrast, unpeeled segments wounded with six vertical slits exhibited significant responses to both IAA and FC, indicating that peeling does not act by damaging the tissue. Microscopy showed that the epidermis was removed intact and that the underlying tissue was essentially undamaged. Neither the addition of 2% sucrose to the incubation medium nor the use of a range of IAA concentrations down to 10-8 M restored IAA-induced growth in peeled segments, suggesting that lack of osmotic solutes and supra-optimal uptake of IAA were not important factors over this time period. It is concluded that, although the possibility remains that peeling merely allows leakage of hydrogen ions into the medium, it seems more likely that peeling off the epidermis removes the auxin responsive tissue.Abbreviations IAA indole-3-acetic acid - FC fusicoccin  相似文献   
9.
10.
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG -subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of -subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of -galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1\to4)-d-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably -galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号