首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   26篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   26篇
  2014年   19篇
  2013年   34篇
  2012年   24篇
  2011年   21篇
  2010年   8篇
  2009年   10篇
  2008年   19篇
  2007年   9篇
  2006年   18篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   11篇
  2001年   12篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1971年   1篇
排序方式: 共有296条查询结果,搜索用时 31 毫秒
1.
Phlebotomine sandflies were captured in rural settlement and periurban areas of the municipality of Guaraí in the state of Tocantins (TO), an endemic area of American cutaneous leishmaniasis (ACL). Forty-three phlebotomine species were identified, nine of which have already been recognised as ACL vectors. Eleven species were recorded for the first time in TO. Nyssomyia whitmani was the most abundant species, followed by Evandromyia bourrouli, Nyssomyia antunesi and Psychodopygus complexus. The Shannon-Wiener diversity index and the evenness index were higher in the rural settlement area than in the periurban area. The evaluation of different ecotopes within the rural area showed the highest frequencies of Ev. bourrouli and Ny. antunesi in chicken coops, whereas Ny. whitmani predominated in this ecotope in the periurban area. In the rural settlement area, Ev. bourrouli was the most frequently captured species in automatic light traps and Ps. complexus was the most prevalent in Shannon trap captures. The rural settlement environment exhibited greater phlebotomine biodiversity than the periurban area. Ps. complexus and Psychodopygus ayrozai naturally infected with Leishmania (Viannia) braziliensis were identified. The data identified Ny. whitmani as a potential ACL vector in the periurban area, whereas Ps. complexus was more prevalent in the rural environment associated with settlements.  相似文献   
2.
The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.  相似文献   
3.
Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.  相似文献   
4.
Reorganisation of cerebral representations has been hypothesised to underlie the recovery from ischaemic brain infarction. The mechanisms can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). Functional neuroimaging showed that reorganisation is a dynamic process beginning after stroke manifestation. In the acute stage, the mismatch between a large perfusion deficit and a smaller area with impaired water diffusion signifies the brain tissue that potentially enables recovery subsequent to early reperfusion as in thrombolysis. Single-pulse TMS showed that the integrity of the cortico-spinal tract system was critical for motor recovery within the first four weeks, irrespective of a concomitant affection of the somatosensory system. Follow-up studies over several months revealed that ischaemia results in atrophy of brain tissue adjacent to and of brain areas remote from the infarct lesion. In patients with hemiparetic stroke activation of premotor cortical areas in both cerebral hemispheres was found to underlie recovery of finger movements with the affected hand. Paired-pulse TMS showed regression of perilesional inhibition as well as intracortical disinhibition of the motor cortex contralateral to the infarction as mechanisms related to recovery. Training strategies can employ post-lesional brain plasticity resulting in enhanced perilesional activations and modulation of large-scale bihemispheric circuits.  相似文献   
5.
DNA–DNA hybridizations (DDH) play a key role in microbial species discrimination in cases when 16S rRNA gene sequence similarities are 97 % or higher. Using real-world 16S rRNA gene sequences and DDH data, we here re-investigate whether or not, and in which situations, this threshold value might be too conservative. Statistical estimates of these thresholds are calculated in general as well as more specifically for a number of phyla that are frequently subjected to DDH. Among several methods to infer 16S gene sequence similarities investigated, most of those routinely applied by taxonomists appear well suited for the task. The effects of using distinct DDH methods also seem to be insignificant. Depending on the investigated taxonomic group, a threshold between 98.2 and 99.0 % appears reasonable. In that way, up to half of the currently conducted DDH experiments could safely be omitted without a significant risk for wrongly differentiated species.  相似文献   
6.
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.  相似文献   
7.
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K+) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world’s most important and salt-sensitive crop species. Using efflux analysis with 42K, coupled with growth and tissue K+ analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K+ set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K+ release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K+ status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na+ accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K+ efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K+ status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na+ accumulation is the key factor in performance decline on NaCl stress.  相似文献   
8.
Highlights? Cnn2 is expressed in NCCs and required for their migration in frogs and chicks ? Cnn2 is inactivated by noncanonical Wnt signaling ? Loss of Cnn2 causes a switch from cortical actin to central stress fibers ? Cnn2 polarizes the actin cytoskeleton downstream of PCP  相似文献   
9.

Introduction

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

Methods

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

Results

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

Conclusion

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号