首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   6篇
  2010年   6篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
Talin is an adaptor protein that couples integrins to F-actin. Structural studies show that the N-terminal talin head contains an atypical FERM domain, whereas the N- and C-terminal parts of the talin rod include a series of α-helical bundles. However, determining the structure of the central part of the rod has proved problematic. Residues 1359–1659 are homologous to the MESDc1 gene product, and we therefore expressed this region of talin in Escherichia coli. The crystal structure shows a unique fold comprised of a 5- and 4-helix bundle. The 5-helix bundle is composed of nonsequential helices due to insertion of the 4-helix bundle into the loop at the C terminus of helix α3. The linker connecting the bundles forms a two-stranded anti-parallel β-sheet likely limiting the relative movement of the two bundles. Because the 5-helix bundle contains the N and C termini of this module, we propose that it is linked by short loops to adjacent bundles, whereas the 4-helix bundle protrudes from the rod. This suggests the 4-helix bundle has a unique role, and its pI (7.8) is higher than other rod domains. Both helical bundles contain vinculin-binding sites but that in the isolated 5-helix bundle is cryptic, whereas that in the isolated 4-helix bundle is constitutively active. In contrast, both bundles are required for actin binding. Finally, we show that the MESDc1 protein, which is predicted to have a similar fold, is a novel actin-binding protein.  相似文献   
2.
Various pyrazolo[3,4-d]pyrimidines carrying a variety of substituents in the 6-position have been synthesised and their ability to inhibit growth of Mycobacterium tuberculosis in vitro has been determined. Compounds 5a, 5b, 6c, 7a, 7b, 8d, 8e and 8f demonstrated a minimum inhibitory concentration (MIC) of <6.25?μg/mL and were found to be active against Mycobacterium tuberculosis strain H(37)RV. Compound 8d was found to be the most active compound in vitro with a MIC of <6.25?μg/mL and inhibitory concentration IC(90) of 1.53?μg/mL.  相似文献   
3.
4.
Talin is a large (~2540 residues) dimeric adaptor protein that associates with the integrin family of cell adhesion molecules in cell-extracellular matrix junctions (focal adhesions; FAs), where it both activates integrins and couples them to the actin cytoskeleton. Calpain2-mediated cleavage of talin between the head and rod domains has previously been shown to be important in FA turnover. Here we identify an additional calpain2-cleavage site that removes the dimerisation domain from the C-terminus of the talin rod, and show that an E2492G mutation inhibits calpain cleavage at this site in vitro, and increases the steady state levels of talin1 in vivo. Expression of a GFP-tagged talin1 E2492G mutant in CHO.K1 cells inhibited FA turnover and the persistence of cell protrusion just as effectively as a L432G mutation that inhibits calpain cleavage between the talin head and rod domains. Moreover, incorporation of both mutations into a single talin molecule had an additive effect clearly demonstrating that calpain cleavage at both the N- and C-terminal regions of talin contribute to the regulation of FA dynamics. However, the N-terminal site was more sensitive to calpain cleavage suggesting that lower levels of calpain are required to liberate the talin head and rod fragments than are needed to clip off the C-terminal dimerisation domain. The talin head and rod liberated by calpain2 cleavage have recently been shown to play roles in an integrin activation cycle important in FA turnover and in FAK-dependent cell cycle progression respectively. The half-life of the talin head is tightly regulated by ubiquitination and we suggest that removal of the C-terminal dimerisation domain from the talin rod may provide a mechanism both for terminating the signalling function of the talin rod and indeed for inactivating full-length talin thereby promoting FA turnover at the rear of the cell.  相似文献   
5.
Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. It exists in both globular and extended conformations, and an intramolecular interaction between the N-terminal F3 FERM subdomain and the C-terminal part of the talin rod contributes to an autoinhibited form of the molecule. Here, we report the solution structure of the primary F3 binding domain within the C-terminal region of the talin rod and use intermolecular nuclear Overhauser effects to determine the structure of the complex. The rod domain (residues 1655–1822) is an amphipathic five-helix bundle; Tyr-377 of F3 docks into a hydrophobic pocket at one end of the bundle, whereas a basic loop in F3 (residues 316–326) interacts with a cluster of acidic residues in the middle of helix 4. Mutation of Glu-1770 abolishes binding. The rod domain competes with β3-integrin tails for binding to F3, and the structure of the complex suggests that the rod is also likely to sterically inhibit binding of the FERM domain to the membrane.The cytoskeletal protein talin has emerged as a key player, both in regulating the affinity of the integrin family of cell adhesion molecules for ligand (1) and in coupling integrins to the actin cytoskeleton (2). Thus, depletion of talin results in defects in integrin activation (3), integrin signaling through focal adhesion kinase, the maintenance of cell spreading, and the assembly of focal adhesions in cultured cells (4). In the whole organism, studies on the single talin gene in worms (5) and flies (6) show that talin is essential for a variety of integrin-mediated events that are crucial for normal embryonic development. In vertebrates, there are two talin genes, and mice carrying a talin1 null allele fail to complete gastrulation (7). Tissue-specific inactivation of talin1 results in an inability to activate integrins in platelets (8, 9), defects in the membrane-cytoskeletal interface in megakaryocytes (10), and disruption of the myotendinous junction in skeletal muscle (11). In contrast, mice homozygous for a talin2 gene trap allele have no phenotype, although the allele may be hypomorphic (12).Recent structural studies have provided substantial insights into the molecular basis of talin action. Talin is composed of an N-terminal globular head (∼50 kDa) linked to an extended flexible rod (∼220 kDa). The talin head contains a FERM2 domain (made up of F1, F2, and F3 subdomains) preceded by a domain referred to here as F0 (2). Studies by Wegener et al. (30) have shown how the F3 FERM subdomain, which has a phosphotyrosine binding domain fold, interacts with both the canonical NPXY motif and the membrane-proximal helical region of the cytoplasmic tails of integrin β-subunits (13). The latter interaction apparently activates the integrin by disrupting the salt bridge between the integrin α- and β-subunit tails that normally keeps integrins locked in a low affinity state. The observation that the F0 region is also important in integrin activation (14) may be explained by our recent finding that F0 binds, albeit with low affinity, Rap1-GTP,3 a known activator of integrins (15, 16). The talin rod is made up of a series of amphipathic α-helical bundles (1720) and contains a second integrin binding site (IBS2) (21), numerous binding sites for the cytoskeletal protein vinculin (22), at least two actin binding sites (23), and a C-terminal helix that is required for assembly of talin dimers (20, 24).Both biochemical (25) and cellular studies (16) suggest that the integrin binding sites in full-length talin are masked, and both phosphatidylinositol 4,5-bisphosphate (PIP2) and Rap1 have been implicated in exposing these sites. It is well established that some members of the FERM domain family of proteins are regulated by a head-tail interaction (26); gel filtration, sedimentation velocity, and electron microscopy studies all show that talin is globular in low salt buffers, although it is more elongated (∼60 nm in length) in high salt (27). By contrast, the talin rod liberated from full-length talin by calpain-II cleavage is elongated in both buffers, indicating that the head is required for talin to adopt a more compact state. Direct evidence for an interaction between the talin head and rod has recently emerged from NMR studies by Goksoy et al. (28), who demonstrated binding of 15N-labeled talin F3 to a talin rod fragment spanning residues 1654–2344, an interaction that was confirmed by surface plasmon resonance (Kd = 0.57 μm) (28). Chemical shift data also showed that this segment of the talin rod partially masked the binding site in F3 for the membraneproximal helix of the β3-integrin tail (28), directly implicating the talin head-rod interaction in regulating the integrin binding activity of talin. Goksoy et al. (28) subdivided the F3 binding site in this rod fragment into two sites with higher affinity (Kd ∼3.6 μm; residues 1654–1848) and lower affinity (Kd ∼78 μm; residues 1984–2344). Here, we define the rod domain boundaries and determine the NMR structure of residues 1655–1822, a five-helix bundle. We further show that this domain binds F3 predominantly via surface-exposed residues on helix 4, with an affinity similar to the high affinity site reported by Goksoy et al. (28). We also report the structure of the complex between F3 and the rod domain and show that the latter masks the known binding site in F3 for the β3-integrin tail and is expected to inhibit the association of the talin FERM domain with the membrane.  相似文献   
6.
Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when added as HgCl2 and, in doing so, reduced toxicity associated with Hg(II) for both Alphaproteobacteria methanotrophs, including M. trichosporium OB3b, M. trichosporium OB3b ΔmbnA (a mutant defective in methanobactin production), and Methylocystis sp. strain SB2, and a Gammaproteobacteria methanotroph, Methylomicrobium album BG8. Mercury binding by methanobactin was evident in both the presence and absence of copper, despite the fact that methanobactin had a much higher affinity for copper due to the rapid and irreversible binding of mercury by methanobactin. The formation of a gray precipitate suggested that Hg(II), after being bound by methanobactin, was reduced to Hg(0) but was not volatilized. Rather, mercury remained associated with methanobactin and was also found associated with methanotrophic biomass. It thus appears that although the mercury-methanobactin complex was cell associated, mercury was not removed from methanobactin. The amount of biomass-associated mercury in the presence of methanobactin from M. trichosporium OB3b was greatest for M. trichosporium wild-type strain OB3b and the ΔmbnA mutant and least for M. album BG8, suggesting that methanotrophs may have selective methanobactin uptake systems that may be based on TonB-dependent transporters but that such uptake systems exhibit a degree of infidelity.  相似文献   
7.
8.
The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ~80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ~250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes.  相似文献   
9.
10.

In recent years, there has been a rather acrimonious debate on matters concerning the biology of invasive species, some as fundamental as the definition and what constitutes an invasive species. However, an abiding commonality of all invasive species is the fact that they have all moved away from their native ranges to newer and often non-native ranges. In plants, Lantana camara has shifted from its native South American range distribution to most other parts of the world. In animals, the African giant snail has dispersed from Africa to most parts of Asia. What do such niche shifts signify about the nature and quality of the habitats to which the invasive species have moved? In this paper, using the classical niche paradigm, we analyse if niche shifts of thirty-three of the world’s top invasive species constitute just moving from one habitat to another similar habitat somewhere on the earth (home away from home) or that they have moved to totally new habitats (different from their native home). Surprisingly, our results show that for 90% of the world’s top invasive species, movements have been largely restricted to homes away from home, rather than into alien homes. This clearly indicates the potential inertia that species might face in moving out of their fundamental niche. We discuss these results in the context of the overall debate on invasion biology and how niche conservatism may have played a role in dampening the rates of invasion.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号