首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   17篇
  国内免费   1篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   14篇
  2014年   8篇
  2013年   12篇
  2012年   17篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
排序方式: 共有138条查询结果,搜索用时 250 毫秒
1.
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.  相似文献   
2.
Recent studies by DNA-DNA hybridization revealed that strains now designated as L. acidophilus, can be divided into several groups and only one group should be classified as L. acidophilus. We studied several phenotypic characteristics in representative strains from the six DNA-homology groups of L. acidophilus. No group specific pattern was observed among the strains for fermentation of eight carbohydrates, growth at 15 and 45°C, resistance to 0.2% oxgall, lysis by lysozyme or sensitivity to 17 antibiotics. However, some differences among groups were observed in -galactosidase (-gal) activity and surface layer (s-layer) protein. Strains in B1 do not have a s-layer or -gal while B2 strains also lack a s-layer but do possess -gal. All strains in groups A1, A2, A3 and A4, capable of growing in lactose, have -gal activity and also have a s-layer composed of protein subunits of different molecular weights (MW). Strains in A1 homology group have a s-layer with 46 Kd protein subunits while strains in other A groups have s-layer protein subunits that varied in MW within each group. On the basis of these two traits several isolates of unknown homology groups have been tentatively placed in A1, B1 or B2 groups. L. acidophilus from A1 group showed strain variation in -gal specific activity and rate of acid production and growth. For use in dietary adjuncts, L. acidophilus strains should be selected for these three and other desirable traits. They should be maintained and grown in media containing lactose.  相似文献   
3.
4.
5.
Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator–prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy‐deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate‐only model shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km2 (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate‐only model. It is predicted that future climate may alter the predator–prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards – a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.  相似文献   
6.
Systematic site survey for sample collection and analysis was conducted at a derelict copper (Cu) mine at Kapunda, South Australia. Cu concentrations in the soils at this former mine ranged from 65–10107 mg kg?1. The pH and EC varied widely in the 3.9–8.4 and 152–7311 µS ranges, respectively. Nine plant species growing over the copper mine site were selected to screen for metal uptake to determine their suitability for phytoremediation. The Australian native tree species Eucalyptus camaldulensis indicated enrichment factor (EF) of 2.17, 1.89, and 1.30 for Cu, Zn, and Pb, respectively, suggesting that this species of tree can accumulate these metals to some degree. The stress-resistant exotic olive, Olea europaea exhibited EF of ≤ 0.01 for Cu, Cd, and Pb, and 0.29 for Zn, which is characteristic of an excluder plant. Acacia pycnantha, the Australian pioneer legume species with EF 0.03, 0.80, 0.32, and 0.01 for Cu, Zn, Cd, and Pb, respectively, emerged as another strong metal excluder and consequently as an ideal metal stabilizer.  相似文献   
7.
The potato tuber moth (PTM) is an important pest of the potato plant and its tuber. With the expansion of its geographic range, the PTM could be potential threat to the tomato (Solanum lycopersicum L.), a congeneric species of the potato. To assess that risk, we tested larval feeding and development of PTM on leaves of five cultivated tomato varieties namely Moneymaker, Campari, Ailsa Craig, LA3475, E6203 and one wild tomato variety S. pimpinellifolium. PTM larvae accepted all tested plant leaves and developed into adults. Larval development was fastest on the Ailsa Craig variety. Pupae developed fastest on the Moneymaker variety and slowest on LA3475. Host acceptance and survival were highest on Ailsa Craig and lowest on LA3475. The significantly highest male proportion occurred on LA3475 variety. The study showed that PTM could be a potential threat to tomato cultivation which is rapidly increasing in temperate regions owing to climate change.  相似文献   
8.
Repair of the airway epithelium after injury is critical for restoring normal lung. The reepithelialization process involves spreading and migration followed later by cell proliferation. Rho-GTPases are key components of the wound healing process in many different types of tissues, but the specific roles for RhoA and Rac1 vary and have not been identified in lung epithelial cells. We investigated whether RhoA and Rac1 regulate wound closure of bronchial epithelial cells. RhoA and Rac1 proteins were efficiently expressed in a cell line of human bronchial epithelial cells (16HBE) by adenovirus-based gene transfer. We found that both constitutively active RhoA and dominant negative RhoA inhibited wound healing, suggesting that both activation and inhibition of RhoA interfere with normal wound healing. Overexpression of wild-type Rac1 induced upregulation of RhoA, disrupted intercellular junctions, and inhibited wound closure. Dominant negative Rac1 also inhibited wound closure. Inhibition of the downstream effector of RhoA, Rho-kinase, with Y-27632 suppressed actin stress fibers and focal adhesion formation, increased Rac1 activity, and stimulated wound closure. The activity of both RhoA and Rac1 are influenced by the polymerization state of microtubules, and cell migration involves coordinated action of actin and microtubules. Microtubule depolymerization upon nocodazole treatment led to an increase in focal adhesions and decreased wound closure. We conclude that coordination of both RhoA and Rac1 activity contributes to bronchial epithelial wound repair mechanisms in vitro, that inhibition of Rho-kinase accelerates wound closure, and that efficient repair involves intact microtubules.  相似文献   
9.
Temporal and spatial regulation of the actin cytoskeleton is vital for cell migration. Here, we show that an epithelial cell actin-binding protein, villin, plays a crucial role in this process. Overexpression of villin in doxycyline-regulated HeLa cells enhanced cell migration. Villin-induced cell migration was modestly augmented by growth factors. In contrast, tyrosine phosphorylation of villin and villin-induced cell migration was significantly inhibited by the src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) as well as by overexpression of a dominant negative mutant of c-src. These data suggest that phosphorylation of villin by c-src is involved in the actin cytoskeleton remodeling necessary for cell migration. We have previously shown that villin is tyrosine phosphorylated at four major sites. To further investigate the role of tyrosine phosphorylated villin in cell migration, we used phosphorylation site mutants (tyrosine to phenylalanine or tyrosine to glutamic acid) in HeLa cells. We determined that tyrosine phosphorylation at residues 60, 81, and 256 of human villin played an essential role in cell migration as well as in the reorganization of the actin cytoskeleton. Collectively, these studies define how biophysical events such as cell migration are actuated by biochemical signaling pathways involving tyrosine phosphorylation of actin binding proteins, in this case villin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号