首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2019年   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1998年   3篇
  1991年   1篇
  1984年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Pastures in the Appalachian region of the United States comprise a mix of grasses, legumes and forbs that tend to differ in productivity within and among years. A high degree of spatial variability in hill‐land pasture creates microsite conditions that influence botanical composition of pasture. The variation in sward composition presents logistical challenges to livestock producers who rely on a dependable supply of herbage mass and nutritive value to meet production goals. Our objective was to determine if forage communities sown for specific functions, for example, superior dry matter productivity, resource patch exploitation or targeted seasonal production, adapted to changing growing conditions within and among years. Productivity of communities differed among years reflecting the cumulative influences of time, ontogenetic and environmental variations. Maximum productivity was influenced by the specific forage community and less so by simple clipping and fertiliser management. Naturalised swards clipped to emulate hay management tended to have sustained herbage productivity but lower nutritive value when compared to sown communities. Rankings of dry matter productivity of communities were similar for each year where bioactive composition, high productivity and warm season tended to produce the most, and stoloniferous‐rhizomatous and naturalised pasture the least. Regardless of initial sward composition, effective number of species as an index of diversity increased when frequently clipped swards were not fertilised, and when infrequently clipped swards were fertilised. Dry matter production patterns were not influenced by the effective number of species in any forage community suggesting that key species sustained productivity with volunteer species making lesser contribution to total productivity. The species composition of forage plant communities appears to be more important than clipping or fertiliser management practices as a means to sustain forage productivity.  相似文献   
2.
Malinowski  D.P.  Belesky  D.P.  Hill  N.S.  Baligar  V.C.  Fedders  J.M. 《Plant and Soil》1998,198(1):53-61
Tall fescue (Festuca arundinacea Schreb.) plants infected by the fungal endophyte Neotyphodium coenophialum (Morgan-Jones & Gams) (Glenn et al., 1996) often perform better than noninfected plants, especially in marginal resource environments. There is a lack of information about endophyte related effects on the rhizosphere of grasses. In a greenhouse experiment, four endophyte-infected (E+) tall fescue clones (DN2, DN4, DN7, DN11) and their endophyte-free (E–) forms were grown in limed (pH 6.3) Porter soil (low fertility, acidic, high aluminum and low phosphorus content, coarse-loamy mixed mesic Umbric Dystrochrept) at three soil P levels (17, 50, and 96 mg P kg-1 soil) for five months. Excluding the genotype effect, endophyte infection significantly increased cumulative herbage DM yield by 8% at 17 mg P kg-1 soil but reduced cumulative herbage DM yield by 12% at 96 mg P kg-1 soil. With increased P availability in the soil, shoot and root DM, and root/shoot ratio in E+ plants were significantly less when compared to E– plants. Endophyte infection increased specific root length at 17 and 50 mg P kg-1soil. At soil P level of 17 mg P kg-1soil, E+ plants had significantly higher P concentrations both in roots and shoots. Similar relationships were found for Mg and Ca. E+ plants had significantly higher Zn, Fe, and Al concentration in roots, and lower Mn and Al concentration in shoots when compared to E– plants. Ergot alkaloid concentration and content in shoot of E+ plants increased with increasing P availability in the soil from 17 to 50 mg P kg-1 but declined again at 96 mg P kg-1 soil. Ergot alkaloid accumulation in roots increased linearly with P availability in the soil. Results suggest that endophyte infection affects uptake of phosphorus and other mineral nutrients and may benefit tall fescue grown on P-deficient soils. Phosphorus seems also to be involved in ergot alkaloid accumulation in endophyte-infected tall fescue.  相似文献   
3.
Summary Environmental and management factors can influence the protein concentration of forages, significantly altering specific amino acid content. Drought, high rates of fertilizer N and the presence of a fungal endophyte have been associated with significant alterations in plant N metabolites and animal performance problems on tall fescue. A controlled environment study was conducted to examine the influence of N fertilization (10 and 100 gN/g) and water regime (low and adequate soil water availability) upon the distribution and concentration of amino acids in endophyte infected tall fescue (Festuca arundinacea, Schreb.) herbage. Tall fescue tissue was collected from three replicates of each treatment, quick frozen in liquid N and lyophilized. Two insoluble (RI, structural residue; RII, membrane residue) and two soluble (SI, soluble protein; SII, low molecular weight N compounds) fractions were collected. Amino acid analyses of acid hydrolysates of fractions showed that application of 100 N significantly increased the concentration (per unit dry weight) of all amino acids in the entire plant, with an average increase of about 55%. Application of 110 N increased the concentrations of most amino acids in fractions RI, RII, and SI, but only aspartate-asparagine, glutamate-glutamine, alanine, threonine, serine, valine and proline in fraction SII. Fraction RI contained about 65% of total amino acids under 10 N and 55% under 110 N even though N level did not alter dry matter distribution among fractions. While the amount of dry matter was least in SI, amino acids in the fraction ranged from 8% (leucine, 10 N) to 20% (lysine, 110 N) of the total amount of specific amino acids recovered. Significant increases in proline, glutamate, aspartate, serine, valine, threonine, alanine and phenylalanine concentration occurred under low soil-water availability compared with adequate water conditions. Basic amino acids including histidine, arginine and lysine increased with increased N and with water stress at each N level. Application of N increased amounts, and water stress influenced distribution of amino acids among the fractions of tall fescue herhage. Nitrogenous components, such as non-protein amino acids which could influence plant nutritive quality, were increased in fraction SII by increased N and water stress.  相似文献   
4.
Malinowski  D.P.  Belesky  D.P.  Fedders  J. 《Photosynthetica》1998,35(3):419-427
In a growth chamber experiment, we determined net photosynthetic rate (PN) and leaf developmental characteristics of cultivars of a relatively small-, intermediate-, and a large-leaf genotype grown under irradiance of 450-500 µmol(photon) m-2 s-1 (HI), shade [140-160 µmol(photon) m-2 s-1] (LI), and after a shade-to-irradiation (LI »HI) transfer. Differences in physiological responses of the genotypes were more pronounced in HI and LI»HI plants than in LI plants. The small- and intermediate-leaf sizes had greater PN in the first measured leaf than the large-leaf type by 70 and 63 % in HI plants, and by 23 and 18 % in LI»HI plants, respectively. Similar relationships were observed in the next developed leaf. The LI plants did not differ significantly in PN. Greater PN in the small- and intermediate-leaf size genotypes were not associated with greater total dry matter of the plant. Under irradiation, the large-leaf genotype accumulated more total nonstructural saccharides (TNS) and starch than the small- or intermediate-leaf size plants. TNS and starch concentrations in LI plants were about one-half those of HI and LI»HI plants. These results should help to develop management practices that capitalize upon the competitive features of white clover in mixed-species swards.  相似文献   
5.
Soils of the Appalachian region of the United States are acidic and deficient in P. North Carolina phosphate rock (PR), a highly substituted fluoroapatite, should be quite reactive in these soils, allowing it to serve both as a source of P and a potential ameliorant of soil acidity. An experiment was conducted to evaluate the influence of PR dissolution on soil chemical properties and wheat (Triticum aestivum cv. Hart) seedling root elongation. Ten treatments including nine rates of PR (0, 12.5, 25, 50, 100, 200, 400, 800, and 1600 mg P kg-1) and a CaCO3 (1000 mg kg-1) control were mixed with two acidic soils, moistened to a level corresponding to 33 kPa moisture tension and incubated for 30 days. Pregerminated wheat seedlings were grown for three days in the PR treated soils and the CaCO3 control. Root length was significantly (P<0.05) increased both by PR treatments and CaCO3, indicating that PR dissolution was ameliorating soil acidity. The PR treatments increased soil pH, exchangeable Ca, and soil solution Ca while lowering exchangeable Al and 0.01 M CaCl2 extractable soil Al. Root growth in PR treatments was best described by an exponential equation (P<0.01) containing 0.01 M CaCl2 extractable Al. The PR dissolution did not reduce total soil solution Al, but did release Al complexing anions into soil solution, which along with increased pH, shifted Al speciation from toxic to nontoxic forms. These results suggest that North Carolina PR should contribute to amelioration of soil acidity in acidic, low CEC soils of the Appalachian region.  相似文献   
6.
Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon and Hanlin, a fungal endophyte found primarily in shoots of tall fescue (Festuca arundinacea Shreb.), can modify rhizosphere activity in response to phosphorus (P) deficiency. In a controlled environment experiment, two cloned tall fescue genotypes (DN2 and DN4) free (E-) and infected (E+) with their naturally occurring endophyte strains were grown in nutrient solutions at low P (3.1 ppm) or high P (31 ppm) concentrations for 21 d. Endophyte infection increased root dry matter (DM) of DN4 by 21% but did not affect root DM of DN2. Under P deficiency, shoot and total DM were not affected by endophyte but relative growth rate was greater in E+ than E- plants. In high P nutrient solution, E+ plants produced 13% less (DN2) or 29% more (DN4) shoot DM than E- plants. Endophyte affected mineral concentrations in roots more than in shoots. Regardless of P concentration in nutrient solution, E+ DN2 accumulated more P, Ca, Zn and Cu but less K in roots than E- plants. When grown in high P nutrient solution, concentrations of Fe and B in roots of E+ DN2 plants were reduced compared with those of E- plants. Concentrations of P, Ca and Cu in roots of DN4 were less, but K was greater in E+ than E- plants. In shoots, E+ DN2 had greater concentrations of Fe and Cu than E- DN2, regardless of P concentration in nutrient solution. Genotype DN4 responded to endophyte infection by reducing B concentration in shoots. Nutrient uptake rates were affected by endophyte infection in plants grown in low P nutrient solution. A greater uptake rate of most nutrients and their transport to shoots was observed in DN2, but responses of DN4 were not consistent. Results suggest that endophyte may elicit different modes of tall fescue adaptation to P deficiency. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
7.
Tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] often benefits in terms of productivity and persistence when infected with Neotyphodium coenophialum ([Morgan-Jones and Gams], Glenn, Bacon, and Hanlin) endophyte, but the influence of novel non-ergogenic endophytes is unclear. We conducted a field experiment using container-grown tall fescue plants to determine how plants allocated resources when clipped repeatedly in microsites differing in the amount of available light associated with open (full sun), and partially shaded (about 20 or 40% of full sun) conditions. Plants of the same tall fescue cultivar (Jesup) were host to either a native or novel non-ergogenic fungal endophyte (MaxQ™), or were devoid of endophyte. Seedlings of plants infected with the novel endophyte had slower germination, germinated later, and allocated more photosynthate to shoots than roots, when compared to J− or J+ plants. Herbage production of undisturbed canopies was not influenced by host–endophyte association within a microsite, with more herbage produced at the open than at the heavily shaded site. Clipping plants to a 5- or a 10-cm residue height tended to accentuate differences, with diminished productivity and greater variability occurring when plants were maintained at 5 cm. This trend was supported by allometric resource allocation patterns, and in terms of vegetative propagule mass relative to the number of propagules. Tall fescue, irrespective of host–endophyte association, grown as forage in silvopastoral situations should be managed to maintain no less than a 10-cm residual plant height. Trends in photosynthate allocation and plant size might influence persistence and should be investigated for more than two growing seasons.  相似文献   
8.
Summary An investigation was designed to examine the nature and distribution of nitrogen in tall fescue (Festuca arundinacea Schreb.) as influenced by water regime and N fertility under controlled environment conditions. Three replicates of 10 ppm and 110 ppm N were prepared for both adequately watered and water stress treatments of vegetatively propagated tall fescue. Herbage samples were lyophilized and soluble protein extracted in aqueous buffer and separated from low molecular weight N compounds. Two insoluble fractions (RI, cellular and structural fragments; RII, organellar residue, primarily chloroplasts) and two soluble fractions (SI, soluble protein; SII, low molecular weight compounds) were characterized by Kjeldahl N and acid-hydrolyzable amino-acid analyses.Mild water stress increased the crude protein (CP) concentration of tall fescue, especially under limited N conditions. Nitrogen was redistributed among the fractions when tall fescue was water stressed, regardless of N level. Under adequate water conditions at both N levels, about 30% of the soluble plant N was found in SI but under water stress, SI accounted for 50% of the soluble N. This pattern indicates a conservation of intact, nitrogenous material possibly due to decreased proteolysis under mild water stress conditions. The greatest proportion of total N occurred in fraction RI, regardless of water level, 10 N being greater than 110 N. Organellar residue (RII) accounted for about 18.5% of the total N regardless of treatment. Non-protein, non amino acid N concentrations were greatest under 110 N water stress conditions. Nitrate N concentrations contributed to less than one percent of the non-protein non-amino acid nitrogen.Component analysis of N in tall fescue, empirically determined as CP, elucidated the redistribution of nitrogenous constituents in response to N fertilization and water regime which may alter nutritive quality and/or plant survival. Accumulation of low molecular weight N compounds under water stress conditions could relate to animal health and fungal endophyte problems associated with tall fescue.  相似文献   
9.
Endophyte-infected (E+) tall fescue (Festuca arundinacea Schreb.) plants grown in phosphorus (P) deficient soils accumulate more P in roots and shoots than noninfected isolines. In a growth chamber experiment, four tall fescue genotypes DN2, DN4, DN7, and DN11, infected with their naturally occurring strains of Neotyphodium coenophialum (Morgan-Jones & Gams) Glenn, Bacon & Hanlin, and their noninfected isolines (E-), were cultivated in nutrient solution at two P levels: 31 ppm (P+) and 0 ppm (P-) for 4 wk. The Fe3+ reducing activity of extracellular reductants and intact root tissues, and total phenolic concentration in roots and shoots were measured. Endophyte infection significantly increased Fe3+ reducing activity rate of extracellular reductants (9.6 × 10-3 mol Fe3+ h-1 g-1 root FW) when compared to E- plants (3.9 × 10-3) and Fe3+ reduction rate of intact root tissues (6.16 and 4.48 mol Fe3+ h-1 g-1 root FW, respectively for E+ and E- plants). In response to P deficiency, Fe3+ reduction rate of intact root tissues increased in E+ plants by 375% when compared to E- plants, whereas no significant differences were observed when P was provided. Total phenolic concentration was 20% greater in shoots of E+ plants than in E- plants. In response to P deficiency, total phenolic concentration significantly increased in roots of E+ plants by 7%, and decreased in roots of E- plants by 10%. The most active Fe3+ reducing zones were located along branching of secondary and tertiary roots. The Fe3+ reducing activity on the root surface and total phenolic concentration in roots and shoots increased dramatically in response to endophyte infection, especially under P limiting conditions.Visiting Scientist sponsored by the Fulbright Program No. 21133  相似文献   
10.
Tall fescue [Lolium arundinaceum, Schreb., S.J. Darbysh.] productivity and persistence often benefits from association with Neotyphodium coenophialum [Morgan-Jones and Gams], Glenn, Bacon, and Hanlin) endophyte. The influence of novel, non-ergogenic endophytes on nutritive value is unclear, especially when simultaneous stresses (e.g., defoliation and shading) are imposed on the association. We conducted a field experiment using Jesup tall fescue that had either a native or novel non-ergogenic fungal endophyte (AR542; referred to as MaxQ?), or that was endophyte free. Dry matter production and nutritive value including crude protein (CP), non-structural carbohydrates (TNC), ergo- and loline alkaloids, and phenolics were determined for plants stockpiled or clipped repeatedly in sites differing in the amount of light. Productivity varied less among sites when plants were infected with a native endophyte compared to novel or no endophyte. The trend suggests that native endophyte contributed to resilience of the host in this experiment. Leaf dry matter content was affected by host–endophyte association interacting with light availability suggesting differences in leaf composition could occur. Herbage CP increased, whereas TNC decreased with increasing shade. The concentration of loline alkaloids, irrespective of host–endophyte association, tended to increase in leaves with decreasing light availability and could be related to the relatively greater N concentrations in shade-grown leaves. Phenolics decreased in leaves, but increased in stembases as light availability decreased. The combination of increased loline alkaloids in leaves and phenolics in stembases, suggests that shade-grown tall fescue might have some competitive advantage based on the known anti-herbivory attributes of loline alkaloids and phenolic compounds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号