首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2021年   2篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   11篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1994年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
2.
3.
Comparative locomotor performance of marsupial and placental mammals   总被引:2,自引:0,他引:2  
Marsupials are often considered inferior to placental mammals in a number of physiological characters. Because locomotor performance is presumed to be an important component of fitness, we compared marsupials and placentals with regard to both maximal running speeds and maximal aerobic speeds (=speed at which the maximal rate of oxygen consumption, VOlmax, is attained). Maximal aerobic speed is related to an animal's maximal sustainable speed, and hence is a useful comparative index of stamina.
Maximal running speeds of 11 species of Australian marsupials, eight species of Australian murid rodents, two species of American didelphid marsupials, and two species of American rodents were measured in the laboratory and compared with data compiled from the literature. Our values are greater than, or equivalent to, those reported previously. Marsupials and placentals do not differ in maximal running speeds (nor do Australian rodents differ from non-Australian rodents). Within these groups, however, species and families may differ considerably. Some of the interspecific variation in maximal running speeds is related to differences in habitat: species inhabiting open habitats (e.g. deserts) tend to be faster than are species from habitats with more cover, or arboreal species.
Maximal aerobic speeds (compiled from the literature) were higher in large species than in small species. However, marsupials and placentals show no general difference with regard to maximal aerobic speeds.
Maximal running speeds and maximal aerobic speeds for 18 species of mammals were not correlated, after correcting for correlations with body size. Thus, the fastest sprinters do not necessarily have high maximal aerobic speeds.  相似文献   
4.
5.
Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression.Key words: prion disease, optical fractionator, neuropathology, behavioral changes, albino Swiss mice  相似文献   
6.
The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.  相似文献   
7.
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.  相似文献   
8.
The Australian Brush Turkey Alectura lathami is a member of the Megapodiidae, the mound-building birds that produce totally independent, "superprecocial" hatchlings. This study examined the post-hatching development of resting and maximal metabolic rates, and the morphometrically determined changes in pulmonary gas exchange anatomy, in chicks during 3.7 months of growth from hatchlings (122 g) to subadults (1.1 kg). Allometric equations of the form y=aM(b) related gas exchange variables (y) to body mass (M, g). Metabolic rates were measured with open-flow respirometry (mL O2 min(-1)) of chicks resting in the dark and running above the aerobic limit on a treadmill. Resting metabolic rate (RMR=0.02 M(0.99)) and maximal metabolic rate (MMR=0.05 M(1.07)) scaled with exponents significantly above those of interspecific allometries of adult birds. However MMR was below that expected for other species of adult birds in flapping flight, consistent with the Brush Turkey's ground-dwelling habits. Total lung volumes (mL) increased faster than isometrically (V(L)=0.0075 M(1.19)), as did the surface area (cm(2)) of the blood-gas barrier (S(t)=7.80 M(1.23)), but the data overlapped those of adult species. Harmonic mean thickness of the blood-gas barrier was independent of body size (mean tau(ht),=0.39 microm) and was about twice that expected for flying birds. Diffusing capacity (mL O2 min(-1) kPa(-1)) of the blood-gas tissue barrier increased faster than isometrically (Dto2=0.049 M(1.23)); in hatchling Brush Turkeys, it was about 30% expected for adult birds, but this difference disappeared when they became subadults. When compared to altricial Australian pelicans that hatch at similar body masses, superprecocial Brush Turkeys had higher MMR and higher Dto2 at the same body size. A parallel allometry between MMR and Dto2 in Brush Turkeys and pelicans is consistent with the concept of symmorphosis during development.  相似文献   
9.
Hindlimb musculoskeletal anatomy and steady speed over ground hopping mechanics were compared in two species of macropod marsupials, tammar wallabies and yellow-footed rock wallabies (YFRW). These two species are relatively closely related and are of similar size and general body plan, yet they inhabit different environments with presumably different musculoskeletal demands. Tammar wallabies live in relatively flat, open habitat whereas yellow-footed rock wallabies inhabit steep cliff faces. The goal of this study was to explore musculoskeletal differences between tammar wallabies and yellow-footed rock wallabies and determine how these differences influence each species' hopping mechanics. We found the cross-sectional area of the combined ankle extensor tendons of yellow-footed rock wallabies was 13% greater than that of tammar wallabies. Both species experienced similar ankle joint moments during steady-speed hopping, however due to a lower mechanical advantage at this joint, tammar wallabies produced 26% more muscle force. Thus, during moderate speed hopping, yellow-footed rock wallabies operated with 38% higher tendon safety factors, while tammar wallabies were able to store 73% more elastic strain energy (2.18 J per leg vs. 1.26 J in YFRW). This likely reflects the differing demands of the environments inhabited by these two species, where selection for non-steady locomotor performance in rocky terrain likely requires trade-offs in locomotor economy.  相似文献   
10.
Tarpon have high resting or routine hematocrits (Hct) (37.6+/-3.4%) and hemoglobin concentrations (120.6+/-7.3 gl(-1)) that increased significantly following bouts of angling-induced exercise (51.9+/-3.7% and 142.8+/-13.5 gl(-1), respectively). Strenuous exercise was accompanied by an approximately tenfold increase in blood lactate and a muscle metabolite profile indicative of a high energy demand teleost. Routine blood values were quickly restored only when this facultative air-breathing fish was given access to atmospheric air. In vitro studies of oxygen transport capacity, a function of carrying capacity and viscosity, revealed that the optimal Hct range corresponded to that observed in fish under routine behaviour. During strenuous exercise however, further increase in viscosity was largely offset by a pronounced reduction in the shear-dependence of blood which conformed closely to an ideal Newtonian fluid. The mechanism for this behaviour of the erythrocytes appears to involve the activation of surface adrenergic receptors because pre-treatment with propranolol abolished the response. High levels of activity in tarpon living in hypoxic habitats are therefore supported by an elevated Hct with adrenergically mediated viscosity reduction, and air-breathing behaviour that enables rapid metabolic recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号