首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2006年   1篇
  2001年   1篇
  1991年   1篇
  1989年   1篇
  1958年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Retention of green leaf area in grain sorghum under post‐anthesis drought, known as stay‐green, is associated with greater biomass production, lodging resistance and yield. The stay‐green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay‐green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay‐green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay‐green were grown under a post‐anthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age‐related senescence and N uptake during grain filling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay‐green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay‐green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow more carbon and nitrogen to be allocated to the roots of stay‐green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.  相似文献   
2.
3.
A microsatellite‐enriched genomic library was obtained using individuals of the black anglerfish (Lophius budegassa) and eight polymorphic microsatellites were successfully optimized. The genetic analysis of 50 black anglerfish individuals captured in the Cantabrian coasts revealed high polymorphism with a mean of number of alleles per locus of Na = 10.5 (5–28 alleles) and a mean expected heterozygosity of 0.740 (0.521–0.962). This microsatellite set was also functional with a sample from the white anglerfish (Lophius piscatorious) showing a high polymorphism.  相似文献   
4.
An experiment was carried out within a crop of spring wheat(cv. Condor) to examine dry matter partitioning between thedeveloping stem and ear, and to estimate the magnitude of carbonstored in the stem both before and after anthesis, and the subsequentutilization of these reserves during grain growth. The amount of reserve laid down and mobilized was estimatedfrom analysis of data for changes in masses of stem and leaffrom frequent harvests. The rate of change of the dry mass ofthe individual plant organs was expressed as a proportion ofthe rate of change of the total dry mass of the large culm.This value was called the Allocation Ratio (AR). It was assumedthat assimilate was transferred directly from the stem intothe growing ear, and not into other organs. This paper providesevidence for the idea that the stem intemodes of wheat are ableto accumulate and subsequently mobilize a dry matter reserve.The accumulation and subsequent mobilization of fructans inthe stem was demonstrated using ascending thinlayer chromatography.On a dry matter basis the large culms of the wheat crop accumulatedall of their stem reserves after anthesis (0–41 g perlarge culm; 98·4 g m–1). After adjusting the lossof mass by 33% to allow for respiration, it was concluded thatpost-anthesis stem reserves may have contributed at least 21%of the final grain yield of this crop. Triticum aestivum L., semi-dwarf spring wheat, dry matter partitioning, stem reserves, fructans  相似文献   
5.
A field experiment was carried out with a set of near-isogenicspring wheat lines (cv. Triple Dirk) to determine the influenceof the Rht1 and Rht2 alleles on the partitioning of dry matterbetween the developing stem and the ear. Each line was sampledtwice weekly and dissected into its component above-ground parts.The rate of change of the dry mass of the individual plant organswas expressed as a proportion of the rate of change of the totalplant dry mass. This ratio was used to assess the relative sinkstrengths of the stem and ear during crop growth. The Rht1 andRht2 alleles reduced plant height, but increased grain yield.The greater yield was achieved through a greater grain numberper ear in the Rhtl line, a greater ear number per plant inthe Rht2 line, and a greater allocation of assimilate to thedeveloping ear than to the developing stem in both Rht lines,particularly at the time of maximum stem growth (17 d beforeanthesis). From the earliest stages of detectable ear growthuntil anthesis, the ear masses per unit area of the Rht1 andRht2 lines exceeded that of Triple Dirk (Rht). It was not possibleto determine whether the Rht1 and Rht2 alleles were directlyresponsible for increasing grain number per ear and ear numberper plant, respectively, since the increase in these componentsof yield could equally be explained by a greater partitioningof assimilate to developing ears and tillers caused simply bya reduction in plant height. Triticum aestivum L., wheat Rht genes, stem and ear development, dry matter partitioning, allocation ratio  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号