首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2003年   1篇
  1956年   3篇
  1955年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
3.
4.
5.
Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review   总被引:64,自引:1,他引:63  
Oxidative stress is induced by a wide range of environmentalfactors including UV stress, pathogen invasion (hypersensitivereaction), herbicide action and oxygen shortage. Oxygen deprivationstress in plant cells is distinguished by three physiologicallydifferent states: transient hypoxia, anoxia and reoxygenation.Generation of reactive oxygen species (ROS) is characteristicfor hypoxia and especially for reoxygenation. Of the ROS, hydrogenperoxide (H2O2) and superoxide (O2·–) are bothproduced in a number of cellular reactions, including the iron-catalysedFenton reaction, and by various enzymes such as lipoxygenases,peroxidases, NADPH oxidase and xanthine oxidase. The main cellularcomponents susceptible to damage by free radicals are lipids(peroxidation of unsaturated fatty acids in membranes), proteins(denaturation), carbohydrates and nucleic acids. Consequencesof hypoxia-induced oxidative stress depend on tissue and/orspecies (i.e. their tolerance to anoxia), on membrane properties,on endogenous antioxidant content and on the ability to inducethe response in the antioxidant system. Effective utilizationof energy resources (starch, sugars) and the switch to anaerobicmetabolism and the preservation of the redox status of the cellare vital for survival. The formation of ROS is prevented byan antioxidant system: low molecular mass antioxidants (ascorbicacid, glutathione, tocopherols), enzymes regenerating the reducedforms of antioxidants, and ROS-interacting enzymes such as SOD,peroxidases and catalases. In plant tissues many phenolic compounds(in addition to tocopherols) are potential antioxidants: flavonoids,tannins and lignin precursors may work as ROS-scavenging compounds.Antioxidants act as a cooperative network, employing a seriesof redox reactions. Interactions between ascorbic acid and glutathione,and ascorbic acid and phenolic compounds are well known. Underoxygen deprivation stress some contradictory results on theantioxidant status have been obtained. Experiments on overexpressionof antioxidant production do not always result in the enhancementof the antioxidative defence, and hence increased antioxidativecapacity does not always correlate positively with the degreeof protection. Here we present a consideration of factors whichpossibly affect the effectiveness of antioxidant protectionunder oxygen deprivation as well as under other environmentalstresses. Such aspects as compartmentalization of ROS formationand antioxidant localization, synthesis and transport of antioxidants,the ability to induce the antioxidant defense and cooperation(and/or compensation) between different antioxidant systemsare the determinants of the competence of the antioxidant system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号