首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   9篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1971年   2篇
  1963年   1篇
  1958年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
2.
Abstract: Phylogenetic reconstruction of the Upper Barremian ammonite genus Gassendiceras (Gassendiceratinae) was performed using a cladistic analysis incorporating continuous data. Some morphological features were found to vary identically among all the analysed species and therefore carry no phylogenetic information (= symplesiomorphic). The single obtained cladogram allows interpreting the evolution of the Gassendiceras as an anagenetic succession of eight species, in stratigraphic order of appearance, Gassendiceras multicostatum, G. alpinum, G. hoheneggeri, G. rebouleti, G. bosellii, G. quelquejeui, G. coulletae and G. enayi. The clade Pseudoshasticrioceras/Imerites is derived from G. enayi, so the genus Gassendiceras appears to be paraphyletic. But here, we accept this fact as the best evolutive classification. The evolution over time of Gassendiceras is modulated by some processes, which could have constrained the inferred phylogenetic pattern with the drift of the global variability towards the most gracile forms over time. It is tempting to interpret this evolution as a constant selection over time of the Gassendiceras modulated by environmental control due to eustatic variation across a transgressive sequence. Thus, the most peramorphic (gracile) individuals seemed favoured at the expense of those most robust (paedomorphic).  相似文献   
3.
Ephelides and solar lentigines are benign pigmented spots, which are currently associated with an increased risk of skin cancer. These two pigmented spots are known to be discriminated by their clinical, histological, and electron microscopic characteristics, even though occasional misclassification can occur because of their similarity. It has also been questioned whether these spots are not one and the same. In this study, we have attempted to differentiate between these two pigmented spots with the use of a standardized protocol for clinical examinations on 272 healthy volunteers, paying particular consideration to their pigmentary and constitutional host factors. We found that solar lentigines 1) are more prevalent than ephelides, 2) increase in prevalence and number with higher age, and 3) are most prevalent on the trunk and occur more frequently in males than in females. A trend is also observed whereby ephelides 1) loose their prevalence with age, 2) become equally distributed on the face, arms, and trunk, and 3) occur more frequently in females. An intimate association of ephelides, but not solar lentigines, has been found with hair color and skin type. All of these findings are in agreement with most of those reported in the literature, supporting the view that ephelides and solar lentigines are different types of pigmented lesions.  相似文献   
4.
Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels. Immunopositive cells were rare; only up to about 0.4% of these receptor cells were labelled. Despite chemical, species, and topographic differences both antibodies behaved identically in their ultrastructural labelling patterns. For both antibodies, labelling was very specific for olfactory cilia; both bound amply to the thick proximal and the thinner and long distal parts of the cilia. Dendritic knobs showed little labelling if any. Dendritic receptor cell structures below the knobs, supporting cell structures, and respiratory cilia did not immunolabel. There were no obvious differences in morphology between labelled and unlabelled receptor cells and their cilia. Labelling could be followed up to a distance of about 15 μm from the knobs along the distal parts of the cilia. When labelled cells were observed, this signal was detectable in two, sometimes three, sections taken through these cells while being consistently absent in neighbouring cells. This pattern argues strongly for the specificity of the labelling. In conclusion, very few receptor cells labelled with the antibodies to putative odour receptors. Additionally the olfactory cilia, the cellular regions that first encounter odour molecules and that are thought to transduce the odorous signal, displayed the most intense labelling with both antibodies. Consequently, the results showed these cilia as having many copies of the putative receptors. Finally, similar patterns of subcellular labelling were displayed in two different species, despite the use of different antibodies. Thus, this study provides compelling evidence that the heptahelical putative odour receptors localize in the olfactory cilia.  相似文献   
5.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   
6.
Wetlands evapotranspire more water than other ecosystems, including agricultural, forest and grassland ecosystems. However, the effects of elevated atmospheric carbon dioxide (CO2) concentration (Ca) on wetland evapotranspiration (ET) are largely unknown. Here, we present data on 12 years of measurements of ET, net ecosystem CO2 exchange (NEE), and ecosystem water use efficiency (EWUE, i.e. NEE/ET) at 13:00–15:00 hours in July and August for a Scirpus olneyi (C3 sedge) community and a Spartina patens (C4 grass) community exposed to ambient and elevated (ambient+340 μmol mol?1) Ca in a Chesapeake Bay wetland. Although a decrease in stomatal conductance at elevated Ca in the S. olneyi community was counteracted by an increase in leaf area index (LAI) to some extend, ET was still reduced by 19% on average over 12 years. In the S. patens community, LAI was not affected by elevated Ca and the reduction of ET was 34%, larger than in the S. olneyi community. For both communities, the relative reduction in ET by elevated Ca was directly proportional to precipitation due to a larger reduction in stomatal conductance in the control plants as precipitation decreased. NEE was stimulated about 36% at elevated Ca in the S. olneyi community but was not significantly affected by elevated Ca in S. patens community. A negative correlation between salinity and precipitation observed in the field indicated that precipitation affected ET through altered salinity and interacted with growth Ca. This proposed mechanism was supported by a greenhouse study that showed a greater Ca effect on ET in controlled low salinity conditions compared with high salinity. In spite of the differences between the two communities in their responses to elevated Ca, EWUE was increased about 83% by elevated Ca in both the S. olneyi and S. patens communities. These findings suggest that rising Ca could have significant impacts on the hydrologic cycles of coastal wetlands.  相似文献   
7.
1. Ancient, deep lakes have traditionally been considered as stable, ecological islands, well buffered from environmental change because of their great depth. However, they are not immune to anthropogenic and climatic stress. Ecosystems of the permanently stratified warm Lakes Malawi and Tanganyika in the Great East African Rift are particularly delicate. Their stratification regime has historically limited the distribution of benthic biota to a ‘bathtub ring of biodiversity’, namely substrata in the upper, oxygenated water layer. 2. We use historical data on the endemic deep‐water molluscs of these lakes to assess present‐day stress on their benthic ecosystems. During the 20th century, these molluscs have probably decreased in abundance and migrated to shallower water. 3. These apparent trends have a significance beyond species‐based conservation, foremost because deep‐water organisms heavily rely on the position and temporal stability of the oxycline and therefore provide an early warning of large‐scale changes in the distribution of dissolved oxygen. Oxygen demands have increased in the East African Great Lakes over the last century whereas ventilation of deep water has remained the same or declined. 4. The combination of these factors is resulting in a narrowing of the ring of biodiversity and a changed nutrient flux through this ring. Reduction in the habitat available inevitably puts biota at risk, whereas changes in nutrient flux may cause shifts in the entire ecosystem or the collapse of parts of it. 5. Considering the socioeconomic value of these lakes and the potentially grave implications for their faunal biodiversity and entire ecosystems, existing evidence of faunal decline, especially in taxa that depend strongly on the stratification regime, is of great concern. Moreover, because the factors responsible are widespread and include surface‐water warming, increased run‐off and eutrophication, respiration stress may also develop in other tropical and subtropical lakes.  相似文献   
8.
Ward, D. A. and Drake, B. G. 1988. Osmotic stress temporarilyreverses the inhibitions of photosynthesis and stomatal conductanceby abscisic acid—evidence that abscisic acid induces alocalized closure of stomata in intact, detached leaves.—J.exp. Bot 39: 147–155. The influence of osmotic stress on whole leaf gas exchange wasmonitored in detached leaves of Glycine max supplied with anexogenous concentration (10–5 mol dm–3) of ±abscisicacid (ABA) sufficient to inhibit net photosynthesis and stomatalconductance by 60% and 70%, respectively, under a saturatingirradiance and normal air. Raising the osmotic (sorbitol) concentrationof the ABA solutions feeding leaves elicited rapid and synchronousreversals of the ABA-dependent inhibitions of net photosynthesisand conductance. These reversals reached a peak simultaneously,after which photosynthesis and conductance declined. The magnitudeof the transient stimulations at peak height was dependent uponthe sorbitol concentration of the ABA feeding solution, althoughthe time-course of the transients (half time, 4–6 min)was similar for the different osmotic concentrations applied.Irrespective of transient size the relative changes of photosynthesisand conductance were comparable; consequently the calculatedpartial pressure of CO2 in the substomatal space (Ci) remainedrelatively constant during the transient phase. In contrastto the ABA-treated leaves, elevating the osmotic concentrationof the distilled water supply feeding control leaves stimulatedconductance to a much greater relative extent than photosynthesis.The co-stimulations of photosynthesis and conductance inducedin ABA-treated leaves by osmotic shock were not due to a restrictionin the transpirational uptake of ABA and occurred irrespectiveof the source osmoticum applied. These data are consistent with the hypothesis that the ABA-dependentinhibition of photosynthesis at constant Ci is an artifact causedby the spatially heterogeneous closure of stomata in responseto ABA. Alternative explanations for the responses are, however,considered. Key words: Abscisic acid, photosynthesis, osmotic stress, Glycine max, stomatal conductance  相似文献   
9.
Atmospheric CO2 concentration is rising and it has been suggested that a portion of the additional carbon is being sequestered in terrestrial vegetation and much of that in below-ground structures. The objective of the present study was to quantify the effects of elevated atmospheric CO2 on fine root length and distribution with depth with minirhizotrons in an open-top chamber experiment in an oak-palmetto scrub ecosystem at Kennedy Space Centre, Florida, USA. Observations were made five times over a period of one and a half years in three ambient chambers (350 p.p.m. CO2), three CO2 enriched chambers (700 p.p.m. CO2), and three unchambered plots. Greater root length densities were produced in the elevated CO2 chambers (14.2 mm cm?2) compared to the ambient chambers (8.7 mm cm?2). More roots may presumably lead to more efficient acquisition of resources. Fine root abundance varied significantly with soil depth, and there appeared to be enhanced proliferation of fine roots near the surface (0–12 cm) and at greater depth (49–61 cm) in the elevated CO2 chambers. The vertical root distribution pattern may be a response to availability of nutrients and water. More studies are needed to determine if increased root length under CO2 enriched conditions actually results in greater sequestering of carbon below ground.  相似文献   
10.
Ward, D. A. and Drake, B. G. 1987. Photoinhibition under atmosphericO2, the activation state of RuBP carboxylase and the contentof photosynthetic intermediates in soybean and wheat.—J.exp. Bot. 38: 1937–1948. Associations between photosynthesis, the activation state ofRuBP carboxylase and the contents of photosynthetic intermediateswere compared in soybean and wheat leaves before and after exposureto photoinhibitory treatments in the presence of atmosphericO2. Exposing attached leaves to a supra-saturating irradiance(3 800 µmol quanta m– 2 s–1) for 2 h in CO2-freeair decreased carboxylation efficiency and the light-saturatedphotosynthetic rate in air by approximately 50%. Exposure tothe photoinhibitory treatment for periods in excess of 2 h didnot cause a further decrease of photosynthesis in soybean. Althoughphotosynthesis was reduced, the initial and total (fully-activated)activities of ribulose 1,5-bisphosphate carboxylase (RuBPCase)in leaf extracts were unaltered in each species by the photoinhibitorytreatment. This was true for leaves sampled under both air andat a rate-limiting intercellular CO2 partial pressure (Ci) of75 µPa Pa–1. The contents of ribulose l,5-bisphosphate(RuBP) and 3-phosphoglyceric acid (3-PGA) were reduced by thephotoinhibitory treatment in soybean leaves sampled in air andat a rate-limiting Ci, although the RuBP/3-PGA ratio was unaffected.The relative reduction of RuBP content in soybean leaves atrate-limiting C1 was similar to the corresponding reductionof carboxylation efficiency. For wheat,the relative reductionof RuBP content at rate-limiting Ci (–19%) caused by thephotoinhibitory treatment was considerably less than the correspondingdecrease of carboxylation efficiency (–49%).The RuBP/3-PGAratio of wheat was also increased significantly by the photoinhibitorytreatment The significance of these observations to the regulationof CO2-limited photosynthesis in leaves experiencing photoinhibitionunder atmospheric oxygen is discussed. Consideration is alsogiven to the previous contention that contemporary measurementsof initial activity in crude extracts may provide a spuriousindication of the amount of the enzyme-CO2-Mg2 + form of RuBPcarboxylase present in the leaf. Key words: Carboxylation efficiency, RuBP carboxylase, photoinhibition, RuBP, 3-PGA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号