首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Combining pheromone trapping and genetic analyses can be useful when trying to resolve complexes of closely related insect taxa that are difficult to distinguish based on morphological characters. Nearctic and Palearctic populations of the spruce seed moth, Cydia strobilella L., have been considered taxonomically synonymous since 1983, but more recent work revealing distinct sex pheromones for Canadian and Swedish moths suggest that populations in the two regions belong to different species. In order to test this hypothesis, we performed field trapping using different pheromone lures at ten sites in North America, Europe and Asia, and reconstructed phylogenetic relationships among trapped moths using mitochondrial (cytochrome oxidase subunit I) and nuclear (elongation factor 1 alpha) DNA sequence data. Trapping data and tree topologies for both genes revealed distinct pherotypes in North America and Eurasia. A genetically distinct population from China was investigated further with respect to its sex pheromone. Electrophysiological data indicated that Chinese females produce a deviant ratio of the sex pheromone components (dienic acetates) compared to Swedish females. However, trapping experiments in both areas revealed a similar broad response profile in males to a wide range of acetate ratios, and these populations should be considered taxonomically synonymous. A previous suggestion of an agonistic effect on the attraction of C. strobilella males in Sweden when adding the corresponding alcohols to the binary acetate blend was also tested in Sweden as well as in China, with no observed effect on attraction of males. In conclusion, our study demonstrates the great potential of using pheromone trapping as a tool for identification and delimitation of taxa within cryptic species complexes. Based on our data, Nearctic and Palearctic populations of C. strobilella should be considered different species, and C. youngana Kearfott stat. rev. is resurrected here as valid name for North American populations, which was the case before the revision in 1983.  相似文献   
3.
The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear.
Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.  相似文献   
4.
A strategy to assess river restoration success   总被引:6,自引:0,他引:6  
1. Elaborate restoration attempts are underway worldwide to return human‐impacted rivers to more natural conditions. Assessing the outcome of river restoration projects is vital for adaptive management, evaluating project efficiency, optimising future programmes and gaining public acceptance. An important reason why assessment is often omitted is lack of appropriate guidelines. 2. Here we present guidelines for assessing river restoration success. They are based on a total of 49 indicators and 13 specific objectives elaborated for the restoration of low‐ to mid‐order rivers in Switzerland. Most of these objectives relate to ecological attributes of rivers, but socio‐economic aspects are also considered. 3. A strategy is proposed according to which a set of indicators is selected from the total of 49 indicators to ensure that indicators match restoration objectives and measures, and that the required effort for survey and analysis of indicators is appropriate to the project budget. 4. Indicator values are determined according to methods described in detailed method sheets. Restoration success is evaluated by comparing indicator values before and after restoration measures have been undertaken. To this end, values are first standardised on a dimensionless scale ranging from 0 to 1, then averaged across different indicators for a given project objective, and finally assigned to one of five overall success categories. 5. To illustrate the application of this scheme, a case study on the Thur River, Switzerland, is presented. Seven indicators were selected to meet a total of five project objectives. The project was successful in achieving ‘provision of high recreational value’, ‘lateral connectivity’ and ‘vertical connectivity’ but failed to meet the objectives ‘morphological and hydraulic variability’ and ‘near natural abundance and diversity of fauna’. Results from this assessment allowed us to identify potential deficits and gaps in the restoration project. To gain information on the sensitivity of the assessment scheme would require a set of complementary indicators for each restoration objective.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号