首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2016年   4篇
  2015年   3篇
  2013年   1篇
  2011年   1篇
  2010年   6篇
  2008年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
排序方式: 共有30条查询结果,搜索用时 328 毫秒
1.
Nanocrystalline SrS phosphors doped with Ce3+ ions at different concentrations (0.5, 1, 1.5 and 2 mol%) are synthesized via the solid‐state diffusion method (SSDM), which is suitable for the large‐scale production of phosphors in industrial applications. The as‐prepared samples are characterized using an X‐ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), high‐resolution transmission electron microscopy (HRTEM) and energy‐dispersive X‐ray (EDX) analysis. The optical properties of these phosphors are analyzed using reflectance spectra, photoluminescence spectra and afterglow decay curves. The cubic structure of the SrS phosphor is confirmed by XRD analysis and the crystallite size calculated by Scherer's formula using XRD data shows the nanocrystalline nature of the phosphors. No phase change is observed with increasing concentrations of Ce3+ ions. The surface morphology of the prepared phosphors is determined by FESEM, which shows a sphere‐like structure and good connectivity of the grains. The authenticity of the formation of nanocrystalline phosphors is examined by HRTEM analysis. Elemental compositional information for the prepared phosphors is gathered by EDX analysis. Photoluminescence studies reveal that the emission spectra of the prepared phosphor shows broad band emission centered at 458 and 550 nm due to the transition of electrons from the 5d → 4f energy levels. The afterglow decay characteristics of different as‐synthesized SrS:Ce3+ nanophosphors are conceptually described. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
Jatropha curcas is an important non-edible oil seed tree species and is considered a promising source of biodiesel. The complete nucleotide sequence of J. curcas chloroplast genome (cpDNA) was determined by pyrosequencing and gaps filled by Sanger sequencing. The cpDNA is a circular molecule of 163,856 bp in length and codes for 110 distinct genes (78 protein coding, four rRNA and 28 distinct tRNA). Genome organisation and arrangement are similar to the reported angiosperm chloroplast genome. However, in Jatropha, the infA and the rps16 genes are non-functional. The inverted repeat (IR) boundary is within the rpl2 gene, and the 13 nucleotides at the ends of the two duplicate genes are different. Repeat analysis suggests the presence of 72 repeat regions (>30 bp) apart from the IR; of these, 48 were direct and 24 were palindromic repeats. Phylogenetic analysis of 81 protein coding chloroplast genes from 65 taxa by maximum parsimony, maximum likelihood and minimum evolution analyses at 100 bootstraps provide strong support for the placement of inaperturate crotonoids of which Jatropha is a member as sister to articulated crotonoids of which Manihot is a member.  相似文献   
3.
Acinetobacter baumannii is an emerging pathogen that causes serious infections with high mortality rates in immunocompromised individuals. Genetic manipulations in this medically-relevant pathogen are limited by the paucity of molecular tools. In this study, we show the application of the mini-Tn7-based single copy insertion system in A. baumannii. Mini-Tn7 elements are known to integrate at a naturally evolved, therefore presumably neutral location (intergenic region) downstream of the glmS gene (glucosamine-fructose-6-phosphate aminotransferase) in Gram-negative bacteria. We identified the site of insertion of mini-Tn7 in A. baumannii and demonstrated application of this useful cloning tool by inserting the gfp gene into the chromosome. Our work shows that mini-Tn7 elements are useful tools for genetic studies in this important pathogen.  相似文献   
4.
Amod  Ayush  Pahal  Sonu  Choudhary  Princy  Gupta  Ayushi  Singh  Sangeeta 《Biotechnology letters》2022,44(7):879-900
Biotechnology Letters - Hepatocellular carcinoma (HCC) is the uncontrolled growth of hepatocytes which results in nearly 5 million deaths worldwide. Specific strategies have been developed to treat...  相似文献   
5.
Kumar A  Schweizer HP 《PloS one》2011,6(10):e26520

Background

The Pseudomonas aeruginosa MexEF-OprN efflux pump confers resistance to clinically significant antibiotics. Regulation of mexEF-oprN operon expression is multifaceted with the MexT activator being one of the most prominent regulatory proteins.

Methodology

We have exploited the impaired metabolic fitness of a P. aeruginosa mutant strain lacking several efflux pump of the resistance nodulation cell division superfamily and the TolC homolog OpmH, and isolated derivatives (large colony variants) that regained fitness by incubation on nutrient-rich medium in the absence of antibiotics. Although the mexEF-oprN operon is uninducible in this mutant due to a 8-bp mexT insertion present in some P. aeruginosa PAO1 strains, the large colony variants expressed high levels of MexEF-OprN. Unlike large colony variants obtained after plating on antibiotic containing medium which expressed mexEF-oprN in a MexT-dependent fashion as evidenced by clean excision of the 8-bp insertion from mexT, mexEF-oprN expression was MexT-independent in the large colony variants obtained by plating on LB alone since the mexT gene remained inactivated. A search for possible regulators of mexEF-oprN expression using transposon mutagenesis and genomic library expression approaches yielded several candidates but proved inconclusive.

Significance

Our results show that antibiotic and metabolic stress lead to up-regulation of MexEF-OprN expression via different mechanisms and that MexEF-OprN does not only extrude antimicrobials but rather serves other important metabolic functions.  相似文献   
6.
A rapid microcentrifuge-based method is described for preparation of Pseudomonas aeruginosa electrocompetent cells with up to 10,000-fold increased transformation efficiencies over existing procedures. This increased efficiency now enables the use of transformation for all applications requiring DNA transfer. These include transfer of chromosomal mutations marked with antibiotic resistance genes between P. aeruginosa strains, which solves the riddle of not having an efficient and reliable transduction procedure for this bacterium. Not surprisingly, the method also allows for very efficient transformation with replicative plasmids, with transformation efficiencies ranging from 10(7) to >10(11) transformants per microgram of DNA. Lastly, with efficiencies of up to >10(3) transformants per microgram of DNA the method replaces in most instances conjugation for the transfer of non-replicative plasmids used in gene replacement, site-specific gene integration and transposon mutagenesis experiments.  相似文献   
7.
Because of Burkholderia pseudomallei's classification as a select agent in the United States, genetic manipulation of this bacterium is strictly regulated. Only a few antibiotic selection markers, including gentamicin, kanamycin, and zeocin, are currently approved for use with this bacterium, but wild-type strains are highly resistant to these antibiotics. To facilitate routine genetic manipulations of wild-type strains, several new tools were developed. A temperature-sensitive pRO1600 broad-host-range replicon was isolated and used to construct curable plasmids where the Flp and Cre recombinase genes are expressed from the rhamnose-regulated Escherichia coli P(BAD) promoter and kanamycin (nptI) and zeocin (ble) selection markers from the constitutive Burkholderia thailandensis ribosomal P(S12) or synthetic bacterial P(EM7) promoter. Flp and Cre site-specific recombination systems allow in vivo excision and recycling of nptII and ble selection markers contained on FRT or loxP cassettes. Finally, expression of Tn7 site-specific transposase from the constitutive P1 integron promoter allowed development of an efficient site-specific chromosomal integration system for B. pseudomallei. In conjunction with a natural transformation method, the utility of these new tools was demonstrated by isolating an unmarked delta(amrRAB-oprA) efflux pump mutant. Exploiting natural transformation, chromosomal DNA fragments carrying this mutation marked with zeocin resistance were transferred between the genomes of two different B. pseudomallei strains. Lastly, the deletion mutation was complemented by a chromosomally integrated mini-Tn7 element carrying the amrAB-oprA operon. The new tools allow routine select-agent-compliant genetic manipulations of B. pseudomallei and other Burkholderia species.  相似文献   
8.
The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with “SL” indicating “stalkless”). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and β-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent.  相似文献   
9.
Current evidence suggests a multifactorial etiology to pelvic organ prolapse (POP), including genetic predisposition. We conducted a genome-wide association study of POP in African American (AA) and Hispanic (HP) women from the Women’s Health Initiative Hormone Therapy study. Cases were defined as any POP (grades 1–3) or moderate/severe POP (grades 2–3), while controls had grade 0 POP. We performed race-specific multiple logistic regression analyses between SNPs imputed to 1000 genomes in relation to POP (grade 0 vs 1–3; grade 0 vs 2–3) adjusting for age at diagnosis, body mass index, parity, and genetic ancestry. There were 1274 controls and 1427 cases of any POP and 317 cases of moderate/severe POP. Although none of the analyses reached genome-wide significance (p<5x10-8), we noted variants in several loci that met p<10−6. In race-specific analysis of grade 0 vs 2–3, intronic SNPs in the CPE gene (rs28573326, OR:2.14; 95% CI 1.62–2.83; p = 1.0x10-7) were associated with POP in AAs, and SNPs in the gene AL132709.5 (rs1950626, OR:2.96; 95% CI 1.96–4.48, p = 2.6x10-7) were associated with POP in HPs. Inverse variance fixed-effect meta-analysis of the race-specific results showed suggestive signals for SNPs in the DPP6 gene (rs11243354, OR:1.36; p = 4.2x10-7) in the grade 0 vs 1–3 analyses and for SNPs around PGBD5 (rs740494, OR:2.17; p = 8.6x10-7) and SHC3 (rs2209875, OR:0.60; p = 9.3x10-7) in the grade 0 vs 2–3 analyses. While we did not identify genome-wide significant findings, we document several SNPs reaching suggestive statistical significance. Further interrogation of POP in larger minority samples is warranted.  相似文献   
10.
The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1+) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1+ plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens.The development of an HIV-1 vaccine that can elicit protective humoral and cellular immunity is one of the highest priorities in the global fight against HIV/AIDS (2, 44). Data from lentiviral animal models suggest that antibodies capable of neutralizing primary strains of HIV-1 may have the capacity to prevent HIV-1 infection (1, 28, 30, 35). However, the ability to design immunogens that can elicit such broadly reactive neutralizing antibodies (NAbs) has proven to be a formidable obstacle, due in part to the extensive genetic diversity of HIV-1 and the complex escape mechanisms employed by the envelope gp120 and gp41 glycoproteins that form the trimeric viral envelope spike (Env) (20, 34, 45). As improved vaccine immunogens enter the stage of detailed preclinical analysis, the in vitro assays used for evaluating vaccine sera will need to detect incremental advances in the magnitude, breadth, and durability of NAb responses (37). Such data can then be used to distinguish and prioritize among antibody-based vaccine immunogens. Furthermore, highly reproducible and quantitative data on vaccine-elicited NAbs can enhance our understanding of the relationship between Env immunogen design and the resulting antibody response generated.Current recommendations for evaluating candidate vaccine sera for NAb activity include the use of standard reference panels of molecularly cloned HIV-1 Env pseudoviruses and a tiered algorithm of testing (27). Reference virus panels should represent genetically and geographically diverse subsets of viruses with neutralization phenotypes that are generally representative of primary isolate strains that a vaccine would need to protect against. As such, standard reference panels for HIV-1 subtypes B and C have been described (22, 23), and efforts continue toward the creation of virus reference panels representing additional genetic subtypes. For tiered evaluation of NAb activity, vaccine sera are first tested against homologous Env pseudoviruses and/or a small number of isolates that are known to be highly sensitive to antibody-mediated neutralization (commonly referred to as tier 1 viruses). A more rigorous assessment of the potency and breadth of vaccine-induced NAbs entails testing against more resistant reference panel viruses (commonly referred to as tier 2 viruses) that are either matched or mismatched in genetic subtype to the vaccine immunogen (second and third tiers of testing, respectively). This tiered approach for testing candidate HIV-1 vaccine sera is advantageous in that it provides increasingly stringent levels for assessing the potency and breadth of NAbs, uses standardized panels of reference viruses for consistency and reproducibility, and allows for the generation of comparative data sets for evaluating different candidate vaccine regimens.While the tiered algorithm for evaluating vaccine sera has gained acceptance in the field, a major limitation has been the lack of objective data to characterize HIV-1 Env pseudoviruses according to their overall sensitivity or resistance to antibody-mediated neutralization. The category of sensitive, tier 1 viruses arose in part from the observation that HIV-1 isolates passaged through T-cell lines often become highly sensitive to antibody-mediated neutralization (33). Compared to these laboratory-adapted viruses, most primary isolate strains are moderately resistant to NAbs. Yet, even among recently isolated circulating viral Envs, there is a wide spectrum of neutralization sensitivity. Some HIV-1 isolates have a neutralization phenotype closer to that of tier 1 viruses, while others appear to be quite neutralization resistant (6, 19, 22, 23). Overall, there are few data from which to understand or categorize the viral neutralization phenotypes of HIV-1 strains. As a result, we have a limited ability to assess the potential potency of vaccine-elicited NAbs or to estimate the percentage of circulating HIV-1 isolates that would be neutralized. Further categorization of isolates into distinct subgroups based on sensitivity to NAbs may reveal patterns of neutralization that could provide a greater understanding of the NAb response generated by current and future vaccine immunogens. In addition, the structure-based design of novel immunogens may be facilitated by an ability to monitor the types of viruses neutralized and to specifically map the viral epitopes targeted by vaccine-elicited NAbs.In this study, we assembled a diverse panel of 109 HIV-1 Env pseudoviruses, including multiple representatives from clades A, B, and C and circulating recombinant forms (CRFs) CRF07_BC and CRF02_AG-related. These were tested for their sensitivities using HIV-1-positive (HIV-1+) plasma samples representative of clades A, B, and C and CRF01_AE and CRF02_AG. Clinical, demographic, and viral genetic sequence data were collected for each virus. The neutralization phenotype of each virus was assessed with a panel of seven clade-specific HIV-1+ plasma pools. Viruses were rank ordered according to average neutralization sensitivity, and k-means clustering was utilized to identify four subgroups of viruses with neutralization phenotypes ranging from highly sensitive to resistant. Together, these results will improve the ability to rigorously evaluate antibody-based HIV-1 vaccines and will facilitate the interpretation of assay results to identify immunogens with improved capacity to elicit broadly cross-reactive NAbs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号