首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   9篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有116条查询结果,搜索用时 437 毫秒
1.
2.
Previous studies have demonstrated that the cell surface receptor Slamf1 (CD150) is requisite for optimal NADPH-oxidase (Nox2) dependent reactive oxygen species (ROS) production by phagocytes in response to Gram- bacteria. By contrast, Slamf8 (CD353) is a negative regulator of ROS in response to Gram+ and Gram- bacteria. Employing in vivo migration after skin sensitization, induction of peritonitis, and repopulation of the small intestine demonstrates that in vivo migration of Slamf1-/- dendritic cells and macrophages is reduced, as compared to wt mice. By contrast, in vivo migration of Slamf8-/- dendritic cells, macrophages and neutrophils is accelerated. These opposing effects of Slamf1 and Slamf8 are cell-intrinsic as judged by in vitro migration in transwell chambers in response to CCL19, CCL21 or CSF-1. Importantly, inhibiting ROS production of Slamf8-/- macrophages by diphenyleneiodonium chloride blocks this in vitro migration. We conclude that Slamf1 and Slamf8 govern ROS–dependent innate immune responses of myeloid cells, thus modulating migration of these cells during inflammation in an opposing manner.  相似文献   
3.
4.
5.
Islet cell transplantation is a major treatment strategy for type I diabetes, and has proven to be effective for maintaining glucose homeostasis. However, this treatment requires an extended period of immunosuppression to prevent rejection and recurrent transplantation to maintain function. Thus, to enhance the properties of transplanted islet cells, we examined the effect of the co-culture of luteal cells, which secrete progesterone, on islet cell viability, functionality, and revascularization. It was found that islet viability and functionality were higher in the co-cultured group than in single cultures of islets at 48 and 96 h, in parallel with increased progesterone and vascular endothelial growth factor (VEGF) secretion from luteal cells. In the co-culture groups, VEGF levels at 48 and 96 h and CD31 levels at 48 h were significantly higher than those in the islet groups (p?<?0.001 and p?<?0.05, respectively), and basic fibroblast growth factor (bFGF) levels were increased at 96 h (p?<?0.001). Thus, co-culture with luteal cells may increase islet vascularity by enhancing VEGF and bFGF levels for up to 96 h, which could help to markedly increase the pre-transplantation time to allow for effective immunosuppression therapy. This method may also promote islet cell viability and functionality. Progesterone and angiogenic factors secreted from luteal cells may be responsible for these positive effects.  相似文献   
6.
Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process.  相似文献   
7.
Adriamycin (ADR) increases the production of reactive oxygen species (ROS), which diminishes mitochondrial function. Angiotensin-II stimulates mitochondrial ROS generation. The aim of the study was to examine whether angiotensin converting enzyme (ACE) or renin inhibitors protect against ADR-induced mitochondrial function impairment. Rats were divided into five groups as control, ADR, co-treatment ADR with captopril, co-treatment ADR with aliskiren, co-treatment ADR with both captopril and aliskiren. Left ventricular function and blood pressures were assessed at the end of treatment period. Mitochondrial membrane potential (MMP) and ATP levels were determined. ADR treatment decreased the left ventricular pressure and increased the left ventricular end-diastolic pressure. ADR decreased MMP and ATP levels in myocyte mitochondria due to increasing oxidative stress. ADR decreased MMP and ATP levels due to increased oxidative stress in the heart. Inhibitors of ACE and renin caused the elevation of the decreased of MMP and ATP levels. The pathologic changes in electrocardiogram, blood pressure and left ventricular function were decreased by inhibition of Ang-II production. We concluded that inhibitors of angiotensin II are effective against ADR cardiotoxicity via the restoration of MMP and ATP production and prevention of mitochondrial damage in vivo.  相似文献   
8.
Whooping cough (pertussis) is a highly contagious respiratory infection caused by Bordetella pertussis. Although availability of effective pertussis vaccines reportedly decreases the incidence of the disease, B. pertussis circulation in populations has not been eliminated. Thus, it is necessary to find new protein candidates with greater immune protective capacities than the currently available acellular pertussis vaccines. In this study, iron superoxide dismutase (FeSOD) gene (sodB) was cloned, expressed in Escherichia coli and recombinant FeSOD protein thence purified. The recombinant protein (rFeSOD) was formulated with aluminum hydroxide (Alum) or monophosphoryl lipid A (MPLA) and injected intraperitoneally to immunize mice, after which IgG1, IgG2a and IFN‐γ titers were measured to assess humoral and cellular responses, respectively, to these immunizations. The extent of bacterial colonization in lungs of intranasally challenged mice was determined 5, 8 and 14 days post‐challenge. IgG1 and IgG2a responses were significantly stronger in mice that had been immunized with rFeSOD–MPLA than in those that had received rFeSOD‐Alum (P < 0.05). Additionally, IgG2a titers were higher in mice vaccinated with recombinant protein FeSOD (rFeSOD) formulated with MPLA, especially after the second immunization. Immunization with rFeSOD–MPLA also provided a modest, but significant decrease in bacterial counts in lungs of mice (P < 0.05). Antigen specific‐IFN‐γ responses were significantly stronger in the group vaccinated with rFeSOD–MPLA, which could account for the lower bacterial counts. These findings suggest that rFeSOD protein formulated with MPLA has potential as an acellular pertussis vaccine candidate component.  相似文献   
9.
10.
Golden hamsters are nocturnal in captivity but diurnal in nature   总被引:1,自引:0,他引:1  
Daily activity rhythms are nearly universal among animals and their specific pattern is an adaptation of each species to its ecological niche. Owing to the extremely consistent nocturnal patterns of activity shown by golden hamsters (Mesocricetus auratus) in the laboratory, this species is a prime model for studying the mechanisms controlling circadian rhythms. In contrast to laboratory data, we discovered that female hamsters in the wild were almost exclusively diurnal. These results raise many questions about the ecological variables that shape the activity patterns in golden hamsters and the differences between laboratory and field results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号