首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   15篇
  2021年   8篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   9篇
  2014年   9篇
  2013年   22篇
  2012年   13篇
  2011年   18篇
  2010年   9篇
  2009年   16篇
  2008年   13篇
  2007年   10篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   15篇
  2002年   5篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1969年   1篇
排序方式: 共有216条查询结果,搜索用时 31 毫秒
1.
To determine the distribution and frequency of cystic fibrosis (CF) mutations in the Israeli population, we have screened 96 patients for 11 relatively common mutations. Five mutations--delta F508, G542X, W1282X, N1303K, and 3849 + 10kb C-->T--were found to account for 97% of the CF alleles in the Ashkenazi Jews. In contrast, of the 11 mutations tested, only delta F508 was detected in Jewish patients of Sephardic or Oriental origin, accounting for 43% of the CF alleles. Four mutations--delta F508, G542X, W1282X, and N1303K--accounted for 55% of the CF alleles in Arab patients. In a pilot screening study, a random sample of 424 Ashkenazi individuals was analyzed for three mutations--delta F508, W1282X, and G542X. Thirteen individuals were detected as heterozygotes (six for delta F508 and seven for W1282X), predicting a heterozygote frequency of 1:29. This is similar to the frequency of carriers in the Caucasian population of northern European ancestry. On the basis of these data, the Ashkenazi population is considered to be a candidate for CF heterozygote screening.  相似文献   
2.
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect.  相似文献   
3.
Abstract

The 1-hydroxymethyl-3-cyclopentene (4) was converted, after epoxidation, to two new exocyclic amino carbocyclic nucleosides (1, 2), and a new cyclopentane nucleoside analogue (3), with potential biological activities. The regioselectivity of the epoxidation (4), which is the key step, is governed by steric control using aryl and silyl hydroxyl protecting groups.  相似文献   
4.
Neuroblastoma (NB) arises from the embryonic neural crest and is the most common extracranial solid tumor in children under 5 years of age. Reduced expression of Dicer1 has recently been shown to be in correlation with poor prognosis in NB patients. This study aimed to investigate the mechanisms that could lead to the down-regulation of Dicer1 in neuroblastoma. We used computational prediction to identify potential miRs down-regulating Dicer1 in neuroblastoma. One of the miRs that were predicted to target Dicer1 was miR-192. We measured the levels of miR-192 in 43 primary tumors using real time PCR. Following the silencing of miR-192, the levels of dicer1 cell viability, cell proliferation and migration capability were analyzed. Multivariate analysis identified miR-192 as an independent prognostic marker for relapse in neuroblastoma patients (p=0.04). We were able to show through a dual luciferase assay and side-directed mutational analysis that miR-192 directly binds the 3'' UTR of Dicer1 on positions 1232-1238 and 2282-2288. An increase in cell viability, proliferation and migration rates were evident in NB cells transfected with miR-192-mimic. Yet, there was a significant decrease in proliferation when NB cells were transfected with an miR-192-inhibitor We suggest that miR-192 might be a key player in NB by regulating Dicer1 expression.  相似文献   
5.
The twin‐arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat‐exported protein and determined the virulence phenotype of mutant strains. Although a tat mutant is highly attenuated, no single Tat‐exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N‐acetylmuramoyl‐l ‐alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments.  相似文献   
6.
7.
8.
Previous investigations showed that a high molecular mass, non-dialyzable material (NDM) from cranberries inhibits the adhesion of a number of bacterial species and prevents the co-aggregation of many oral bacterial pairs. In the present study we determined the effect of mouthwash supplemented with NDM on oral hygiene. Following 6 weeks of daily usage of cranberry-containing mouthwash by an experimental group (n = 29), we found that salivary mutans streptococci count as well as the total bacterial count were reduced significantly (ANOVA, P < 0.01) compared with those of the control (n = 30) using placebo mouthwash. No change in the plaque and gingival indices was observed. In vitro, the cranberry constituent inhibited the adhesion of Streptococcus sobrinus to saliva-coated hydroxyapatite. The data suggest that the ability to reduce mutans streptococci counts in vivo is due to the anti-adhesion activity of the cranberry constituent.  相似文献   
9.
BACKGROUND: WASp family proteins promote actin filament assembly by activating Arp2/3 complex and are regulated spatially and temporally to assemble specialized actin structures used in diverse cellular processes. Some WASp family members are autoinhibited until bound by activating ligands; however, regulation of the budding yeast WASp homolog (Las17/Bee1) has not yet been explored. RESULTS: We isolated full-length Las17 and characterized its biochemical activities on yeast Arp2/3 complex. Purified Las17 was not autoinhibited; in this respect, it is more similar to SCAR/WAVE than to WASp proteins. Las17 was a much stronger activator of Arp2/3 complex than its carboxyl-terminal (WA) fragment. In addition, actin polymerization stimulated by Las17-Arp2/3 was much less sensitive to the inhibitory effects of profilin compared to polymerization stimulated by WA-Arp2/3. Two SH3 domain-containing binding partners of Las17, Sla1 and Bbc1, were purified and were shown to cooperate in inhibiting Las17 activity. The two SLA1 SH3 domains required for this inhibitory activity in vitro were also required in vivo, in combination with BBC1, for cell viability and normal actin organization. CONCLUSIONS: Full-length Las17 is not autoinhibited and activates Arp2/3 complex more strongly than its WA domain alone, revealing an important role for the Las17 amino terminus in Arp2/3 complex activation. Two of the SH3 domain-containing ligands of Las17, Sla1 and Bbc1, cooperate to inhibit Las17 activity in vitro and are required for a shared function in actin organization in vivo. Our results show that, like SCAR/WAVE, WASp proteins can be controlled by negative regulation through the combined actions of multiple ligands.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号