首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2008年   5篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
This work aimed to investigate the effects of the bioreactor configurations and their design variables on the cultivation of vegetative cells Haematococcus pluvialis to achieve sustainable high cell density. The addition of vitamin B to F1 growth medium could appreciably enhance the final cell density. Employing this medium, the cultivation in the airlift bioreactor was demonstrated to outperform the bubble column at the same operating conditions. Aeration was crucial for a proper growth of the alga in the airlift bioreactor, but it must be maintained at low level to minimize shear stress. The most appropriate aeration velocity (superficial velocity) was at the lower limit of the pump, i.e. 0.4 cm s(-1) and a smaller riser was shown to have positive influence on the cell growth. A 1% CO(2) supplement to the air supply considerably enhanced the growth rate of H. pluvialis and the most suitable light intensity for the growth was at 20 micromol photon m(-2) s(-1). The semi-continuous culture was successfully implemented with the optimal airlift bioreactor design and under optimal conditions the harvest could be performed every four days with the specific growth rate of 0.31 d(-1).  相似文献   
2.
This study investigated the production of value-added protein and amino acids from deoiled rice bran by hydrolysis in subcritical water (SW) in the temperature range between 100 and 220 degrees C for 0-30 min. The results suggested that SW could effectively be used to hydrolyze deoiled rice bran to produce useful protein and amino acids. The amount of protein and amino acids produced are higher than those obtained by conventional alkali hydrolysis. The yields generally increased with increased temperature and hydrolysis time. However, thermal degradation of the product was observed when hydrolysis was carried out at higher temperature for extended period of time. The highest yield of protein and amino acids were 219 +/- 26 and 8.0 +/- 1.6 mg/g of dry bran, and were obtained at 200 degrees C at hydrolysis time of 30 min. Moreover, the product obtained at 200 degrees C after 30 min of hydrolysis exhibited high antioxidant activity and was shown to be suitable for use as culture medium for yeast growth.  相似文献   
3.
To potentially replace the conventional destructive extraction process, we have shown the feasibility of devising a novel technique that uses ultrasound to nonlethally and repeatedly extract menthol from biologically viable peppermint plants (Mentha x piperita). Our results show that plants ultrasonicated for 1 h at 22 degrees C in a standard 40 kHz ultrasonic bath could release approximately 17.8 microg of menthol per gram of leaf tissue (2% of total product). The amount of menthol release increases with the time of treatment and is greatly affected by the temperature of the ultrasonic bath water. An increase from 2% to 12% of total product was observed when the temperature was increased from 22 degrees C to 39 degrees C. When the temperature effects were isolated, the mechanism of the product release was found to be that of cavitation. The treated plants remained viable and were ready for the subsequent ultrasound extraction after approximately 4 days of recuperation. However, the amount of product released is reduced in subsequent extractions. Scanning electron micrographs indicate that there are two mechanisms involved in extraction: (1) the diffusion of product through the cuticle of peppermint glandular trichomes and (2) the exudation of the product from broken and damaged trichomes. This study has shown the possibility of using an on-line ultrasonic, nondestructive extraction method to continuously release intracellular plant metabolites from the plants while maintaining the plant's viability.  相似文献   
4.
This study concerns the production of yeast extract from spent brewer's yeast using rotary microfiltration as a means to combine debittering and cell debris separation into a single step, without using a toxic alkali wash. The pH of yeast homogenate was found to affect protein yield and bitterness of the product. Rotary filtration of yeast homogenate at various pHs resulted in different percent protein transmissions. These were found to be 5.05%, 9.83%, and 30.83% for pH 5, 6, and 7.5, respectively. The bitterness concentration in the permeate was also found to be higher at higher pHs. Autolysis of the cell homogenate prior to filtration increased protein yield and decreased bitterness considerably. At pH 5.5, the protein transmission was increased to 60% and debittering efficiency was increased from 59% to 86%. The permeate flux and protein productivity could be further increased by increasing the rotational speed, but this resulted in a decrease in debittering efficiency. Thus, the rotational speed should be carefully selected to compromise between the yield and product quality. Furthermore, for the tested rotational speeds of 600 and 1000 rpm, the change in feed flow rate from 11 to 35 L h(-1) changes the flow behavior from turbulent vortex flow to laminar vortex flow, thus decreasing the flux and protein productivity.  相似文献   
5.
Soybean oil and olive oil were investigated as continuous co-solvents for supercritical carbon dioxide (SC-CO2) extraction of astaxanthin from Haematococcus pluvialis. Without co-solvents, only 25.40 ± 0.79% efficiency was achieved with SC-CO2 extraction at 70 °C and 40 MPa at a continuous flow rate of 3 mL min−1 for 5 h. In the presence of soybean oil or olive oil as a co-solvent, the extraction efficiency was enhanced, with the most appropriate level of soybean oil in the solvent mixture being 10% by volume. At this concentration and the above extraction conditions, the highest extraction efficiency of 36.36 ± 0.79% was obtained for soybean oil, a 30% increase in extraction efficiency compared with SC-CO2 extraction without soybean oil, whereas the 10% olive oil increased the extraction efficiency further to 51.03 ± 1.08%, which was comparable to that obtained using ethanol as co-solvent.  相似文献   
6.
Experimental design was used to investigate the effect of operating temperature (40-80 degrees C), operating pressure (30-50 MPa), and extraction time (1-4h) of supercritical carbon dioxide (SC-CO2) extraction on astaxanthin yields and the extract antioxidant activity (IC50). The ranges of the factors investigated were 40-80 degrees C for the operating temperature (X1), 30-50 MPa for the operating pressure (X2), and 1-4h for the extraction time (X3). The statistical analysis of the experiment indicated that pressure, extraction time, and the interaction between temperature and pressure (X1X2) had significant effect on astaxanthin yields. The central composite design showed that polynomial regression models were in good agreement with the experimental results with the coefficients of determination of 0.924 and 0.846 for astaxanthin yield and antioxidant activity, respectively. The optimal condition for astaxanthin yield within the experimental range of the variables studied was at 70 degrees C, 50 MPa, and 4h. At this condition, the predicted amount of astaxanthin extracted was 23.04 mg/g (2.3 wt% or 83.78% recovery). For the effect of experimental extraction conditions on antioxidant activity, IC50 was used as an index, which is the concentration that gives a 50% reduction in the absorbance of the ABTS free radical. The analysis of the results showed that the interaction between the operating temperature and operating pressure (X1X2) was the only significant factor affecting the extract antioxidant activity. The statistical model gave the minimum point for antioxidant activity at 67 degrees C, 40.3 MPa, and 1.86 h of extraction, at which the value for 1/IC50 was 0.39 l/mg (or IC50 was 2.57 mg/l).  相似文献   
7.
Value-added subcritical water hydrolysate from rice bran and soybean meal   总被引:2,自引:0,他引:2  
New value-added product was derived from agricultural by-products: rice bran and soybean meal by means of subcritical water (SW) hydrolysis. The effect of temperature (200-220 degrees C), reaction time (10-30 min), raw material-to-water weight ratio (1:5 and 2:5), was determined on the yields of protein, total amino acids, and reducing sugars in the soluble products. The suitable hydrolysis time was 30 min and the proper weight ratio of the raw material-to-water was 1:5. The reaction temperature suitable for the production of protein and amino acids was 220 degrees C for raw and deoiled rice bran, 210 degrees C for raw soybean meal, and 200 degrees C for deoiled soybean meal. The products were also found to have antioxidant activity as tested by ABTS(.)(+) scavenging assay. In addition, sensory evaluation of milk added with the hydrolysis product of deoiled rice bran indicated the potential use of the product as a nutritious drink.  相似文献   
8.
A novel hydroponic photobioreactor is proposed for high-density cultivation of plants. This cultivation can be achieved by growing plants on a floatable platform, allowing the roots to directly contact a continuously aerated nutrient solution. Plant growth of Mentha x piperita (peppermint) can be shown to strongly correlate with the light intensity at incident light intensities between 0 and 650 &mgr;mol m(-)(2) s(-)(1). For a constant incident light intensity (I(0) = 420 &mgr;mol m(-)(2) s(-)(1)), the overall specific growth rates of these plants are found to be strongly dependent on the plant density. They range from 0.023 to 0.075 d(-)(1) for plants grown at a density range from 16 to 256 plants m(-)(2). A simple mathematical model is presented that allows one to predict these effects of light intensity and plant density on peppermint growth. Light delivery is derived from the modification of Beer-Lambert's law. From this, the relationship between the light extinction coefficient and plant density can be experimentally determined. The light transport can then be coupled with plant growth kinetics under light-limiting conditions. The predicted growth results agree reasonably well with most experimental results from a growth period of 17-20 days. On the basis of these simulation results, we suggest that a more efficient way of delivering light to this photobioreactor can be attained by supplying light from both the top and the bottom of the plant shoots. The proposed design takes advantage of the small size and low weight of light emitting diodes, which allow them to be mounted on platforms for delivering light closer to the plants.  相似文献   
9.
Astaxanthin is receiving commercial interest due to its use as a preferred pigment in aquaculture feeds. Its antioxidant activity is approximately 100 times higher than that of β-tocopherol, and can be used as a potential agent against cancer. Astaxanthin can easily be degraded by thermal or oxidative processes during the manufacture and storage. In this study, astaxanthin and its biological activity were protected against oxidative environmental conditions by encapsulating the homogenized cells in chitosan. Haematococcus pluvialis were formed into beads, which were then coated with 5 layers of chitosan film, resulting in chitosan-algae capsules that have a mean diameter of 0.43 cm and the total film thickness of approximately 100 μm. No significant loss in the amount of astaxanthin content in H. pluvialis was found due to the process of encapsulation. However, approximately 3% loss of antioxidant activity of the H. pluvialis was observed after encapsulation. The results of stability under different storage conditions showed that although encapsulation caused 3% loss of antioxidant activity, the longer term stability of the dried algae biomass, beads, and capsules indicated that encapsulation of H. pluvailis in chitosan film was capable of protecting the algae cells from oxidative stresses.  相似文献   
10.
Non-catalytic hydrothermal decomposition of sericin and fibroin from silk waste into useful protein and amino acids was examined in a closed batch reactor at various temperatures, reaction times, and silk to water ratios to examine their effects on protein and amino acid yields. For the decomposition of sericin, the highest protein yield was found to be 0.466 mg protein/mg raw silk, obtained after 10 min hydrothermal reaction of silk waste at 1:100 silk to water ratio at 120 degrees C. The highest amino acid yield was found to be 0.203 mg amino acids/mg raw silk, obtained after 60 min of hydrothermal reaction of silk waste at 1:20 silk to water ratio at 160 degrees C. For the hydrothermal decomposition of fibroin, the highest protein yield was 0.455 mg protein/mg silk fibroin (1:100, 220 degrees C, 10 min) and that of amino acids was 0.755 mg amino acids/mg silk fibroin (1:50, 220 degrees C, 60 min). The rate of silk fibroin decomposition could be described by surface reaction kinetics. The soluble reaction products were freeze-dried to obtain sericin and fibroin particles, whose conformation and crystal structure of the particles were shown to differ from the original silk materials, particularly in the case of fibroin, in which the change from beta-sheet conformation to alpha-helix/random coil was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号