首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   11篇
  2006年   5篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   9篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有104条查询结果,搜索用时 18 毫秒
1.
K Ono  T Kiyosue  M Arita 《Life sciences》1986,39(16):1465-1470
Effects of mexiletine and lidocaine on inward calcium current (ICa) of single ventricular myocytes from guinea pigs were studied using tight seal whole cell clamp method. Mexiletine at the concentrations of 10, 30 and 100 microM decreased ICa by 23.0, 28.9 and 55.4%, respectively, while lidocaine decreased it by 8.9, 16.8 and 25.2%. At all concentrations tested, a potency for ICa inhibition in mexiletine was significantly greater than that in lidocaine (p less than 0.05). The results suggest that mexiletine has, at therapeutic concentrations, a considerable blocking action on the Ca channels other than well-known action on the Na channels.  相似文献   
2.

Objectives

This study aimed to assess the relation between stent edge restenosis (SER) and the distance from the stent edge to the residual plaque using quantitative intravascular ultrasound.

Background

Although percutaneous coronary intervention with drug-eluting stents has improved SER rates, determining an appropriate stent edge landing zone can be challenging in cases of diffuse plaque lesions. It is known that edge vascular response can occur within 2 mm from the edge of a bare metal stent, but the distance to the adjacent plaque has not been evaluated for drug-eluting stents.

Methods

A total of 97 proximal residual plaque lesions (plaque burden [PB] >40%) treated with everolimus-eluting stents were retrospectively evaluated to determine the distance from the stent edge to the residual plaque.

Results

The SER group had significantly higher PB (59.1 ± 6.1% vs. 51.9 ± 9.1% for non-SER; P = 0.04). Higher PB was associated with SER, with the cutoff value of 54.74% determined using receiver operating characteristic (ROC) curve analysis. At this cutoff value of PB, the distance from the stent edge to the lesion was significantly associated with SER (odds ratio = 2.05, P = 0.035). The corresponding area under the ROC curve was 0.725, and the cutoff distance value for predicting SER was 1.0 mm.

Conclusion

An interval less than 1 mm from the proximal stent edge to the nearest point with the determined PB cutoff value of 54.74% was significantly associated with SER in patients with residual plaque lesions.  相似文献   
3.
4.
5.

Background

Rimmed vacuoles (RVs) are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM) and distal myopathy with RVs (DMRV). Granulovacuolar degeneration (GVD) bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer''s disease and Parkinson''s disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers.

Methods

Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1) tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK]), (2) lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1), and (3) other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43]) in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization.

Results

GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs.

Conclusions

These results suggest that RVs of muscle cells and GVD bodies of neurons share a number of molecules, such as raft-related proteins and tau-modifying proteins.  相似文献   
6.
The role of fibronectin binding protein A (FbpA) in Listeria monocytogenes infection and its pathogenesis were studied in vivo and in vitro by constructing a fbpA‐deficient mutant of L. monocytogenes (ΔfbpA). In vivo, ΔfbpA was less pathogenic in mutant mice than was wild‐type L. monocytogenes. FbpA did not affect the amounts of various virulence‐determining factors, including internalin B and listeriolysin O. However, adherence to, and invasion of, mouse hepatocytes by the ΔfbpA mutant were reduced. In contrast, adherence to, but not invasion of, the ΔfbpA mutant to macrophages was attenuated. Fibronectin contributed to the efficient adherence and invasion of wild‐type L. monocytogenes, but not to those of the ΔfbpA mutant. Attenuation of adhesion and uptake of the ΔfbpA mutant were reversed by overexpression of FbpA in it. FbpA was not involved in intracellular growth, autophagy induction or actin tail formation. Thus, the present findings clearly show that FbpA acts as an important adhesion molecule of L. monocytogenes, especially regarding hepatocytes, without modulating the expression of other virulence factors that have been implicated in the pathogenesis of L. monocytogenes infection.  相似文献   
7.
Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.  相似文献   
8.
Biselyngbyaside, an 18-membered macrolide glycoside from marine cyanobacteria, and its derivatives are known to be sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors. Recently, a SERCA orthologue of the malaria parasite, PfATP6, has attracted attention as a malarial drug target. To provide a novel drug lead, we designed new synthetic analogs of biselyngbyolide B, the aglycone of biselyngbyaside, based on the co-crystal structure of SERCA with biselyngbyolide B, and synthesized them using the established synthetic route for biselyngbyolide B. Their biological activities against malarial parasites were evaluated.  相似文献   
9.

Key message

Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2).

Abstract

LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.
  相似文献   
10.
Cholangiocarcinoma (CCA) has a poor prognosis due to widespread intrahepatic spread. Aspartate β-hydroxylase (ASPH) is a transmembrane protein and catalyzes the hydroxylation of aspartyl and asparaginyl residues in calcium binding epidermal growth factor (cbEGF)-like domains of various proteins, including Notch receptors and ligands. ASPH is highly overexpressed (>95%) in human CCA tumors. We explored the molecular mechanisms by which ASPH mediated the CCA malignant phenotype and evaluated the potential of ASPH as a therapeutic target for CCA. The importance of expression and enzymatic activity of ASPH for CCA growth and progression was examined using shRNA “knockdown” and a mutant construct that reduced its catalytic activity. Second generation small molecule inhibitors (SMIs) of β-hydroxylase activity were developed and used to target ASPH in vitro and in vivo. Subcutaneous and intrahepatic xenograft rodent models were employed to determine anti-tumor effects on CCA growth and development. It was found that the enzymatic activity of ASPH was critical for mediating CCA progression, as well as inhibiting apoptosis. Mechanistically, ASPH overexpression promoted Notch activation and modulated CCA progression through a Notch1-dependent cyclin D1 pathway. Targeting ASPH with shRNAs or a SMI significantly suppressed CCA growth in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号