首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   13篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1990年   1篇
  1986年   3篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
We have determined the sizes of the chromosomes of six Bacillus cereus strains (range 2.4–4.3 Mb) and constructed a physical map of the smallest B. cereus chromosome (2.4 Mb). This map was compared to those of the chromosomes of four B. cereus strains and one B. thuringiensis strain previously determined to be 5.4-6.3 Mb. Of more than 50 probes, 30 were localized to the same half of the larger B. cereus and B. thuringiensis chromosomes. All 30 were also present on the small chromosome. Twenty of the probes present on the other half of the larger chromosomes were either present on extrachromosomal DNA, or absent from the B. cereus strain carrying the small chromosome. We propose that the genome of B. cereus and B. thuringiensis has one constant part and another less stable part which is more easily mobilized into other genetic elements. This part of the genome is localized to one region of the chromosome and may be subject to deletions or more frequent relocations between the chromosome and episomal elements of varying sizes up to the order of megabases.  相似文献   
2.
After separation of gangliosides by thin-layer chromatography, femtomolar quantities of GM1 were detected by incubating the plate with native choleratoxin, followed by anticholeratoxin and species-specific labeled antiserum. Only stable reagents were involved when antiserum labeled with horseradish peroxidase was used. Native choleratoxin rather than iodinelabeled toxin ensured good reproducibility of the method.  相似文献   
3.
Strain BCT-7112T was isolated in 1966 in Japan from a survey designed to obtain naturally occurring microorganisms as pure cultures in the laboratory for use as probiotics in animal nutrition. This strain, which was primarily identified as Bacillus cereus var toyoi, has been in use for more than 30 years as the active ingredient of the preparation TOYOCERIN®, an additive for use in animal nutrition (e.g. swine, poultry, cattle, rabbits and aquaculture). Despite the fact that the strain was initially classified as B. cereus, it showed significant genomic differences from the type strains of the B. cereus group that were large enough (ANI values below 92%) to allow it to be considered as a different species within the group. The polyphasic taxonomic study presented here provides sufficient discriminative parameters to classify BCT-7112T as a new species for which the name Bacillus toyonensis sp. nov. is proposed, with BCT-7112T (=CECT 876T; =NCIMB 14858T) being designated as the type strain. In addition, a pairwise comparison between the available genomes of the whole B. cereus group by means of average nucleotide identity (ANI) calculations indicated that besides the eight classified species (including B. toyonensis), additional genomospecies could be detected, and most of them also had ANI values below 94%. ANI values were on the borderline of a species definition only in the cases of representatives of B. cereus versus B. thuringiensis, and B. mycoides and B. weihenstephanensis.  相似文献   
4.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   
5.
We examined 154 Norwegian B. cereus and B. thuringiensis soil isolates (collected from five different locations), 8 B. cereus and 2 B. thuringiensis reference strains, and 2 Bacillus anthracis strains by using fluorescent amplified fragment length polymorphism (AFLP). We employed a novel fragment identification approach based on a hierarchical agglomerative clustering routine that identifies fragments in an automated fashion. No method is free of error, and we identified the major sources so that experiments can be designed to minimize its effect. Phylogenetic analysis of the fluorescent AFLP results reveals five genetic groups in these group 1 bacilli. The ATCC reference strains were restricted to two of the genetic groups, clearly not representative of the diversity in these bacteria. Both B. anthracis strains analyzed were closely related and affiliated with a B. cereus milk isolate (ATCC 4342) and a B. cereus human pathogenic strain (periodontitis). Across the entire study, pathogenic strains, including B. anthracis, were more closely related to one another than to the environmental isolates. Eight strains representing the five distinct phylogenetic clusters were further analyzed by comparison of their 16S rRNA gene sequences to confirm the phylogenetic status of these groups. This analysis was consistent with the AFLP analysis, although of much lower resolution. The innovation of automated genotype analysis by using a replicated and statistical approach to fragment identification will allow very large sample analyses in the future.  相似文献   
6.
7.
Many short (<400 bp) interspersed sequence repeats exist in bacteria, yet little is known about their origins, mode of generation, or possible function. Here, we present a comprehensive analysis of 18 different previously identified repeated DNA elements, bcr1-bcr18 (?kstad OA, Hegna I, Lindback T, Rishovd AL, Kolst? AB. 1999. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology. 145:621-631.; Tourasse NJ, Helgason E, ?kstad OA, Hegna IK, Kolst? AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol. 101:579-593.), in 36 sequenced genomes from the Bacillus cereus group of bacteria. This group consists of genetically closely related species with variable pathogenic specificity toward different hosts and includes among others B. anthracis, B. cereus, and B. thuringiensis. The B. cereus group repeat elements could be classified into three categories with different properties: Group A elements (bcr1-bcr3) exhibited highly variable copy numbers ranging from 4 to 116 copies per strain, showed a nonconserved chromosomal distribution pattern between strains, and displayed several features characteristic of mobile elements. Group B repeats (bcr4-bcr6) were present in 0-10 copies per strain and were associated with strain-specific genes and disruptions of genome synteny, implying a possible contribution to genome rearrangements and/or horizontal gene transfer events. bcr5, in particular, was associated with large gene clusters showing resemblance to integrons. In agreement with their potentially mobile nature or involvement in horizontal transfers, the sequences of the repeats from Groups A and B (bcr1-bcr6) followed a phylogeny different from that of the host strains. Conversely, repeats from Group C (bcr7-bcr18) had a conserved chromosomal location and orthologous gene neighbors in the investigated B. cereus group genomes, and their phylogeny matched that of the host chromosome. Several of the group C repeats exhibited a conserved secondary structure or had parts of the structure conserved, possibly indicating functional RNAs. Accordingly, five of the repeats in group C overlapped regions encoding previously characterized riboswitches. Similarly, other group C repeats could represent novel riboswitches, encode small RNAs, and/or constitute other types of regulatory elements with specific biological functions. The current analysis suggests that the multitude of repeat elements identified in the B. cereus group promote genome dynamics and plasticity and could contribute to the flexible and adaptive life style of these bacteria.  相似文献   
8.
9.
Group I and group II introns are different catalytic self-splicing and mobile RNA elements that contribute to genome dynamics. In this study, we have analyzed their distribution and evolution in 29 sequenced genomes from the Bacillus cereus group of bacteria. Introns were of different structural classes and evolutionary origins, and a large number of nearly identical elements are shared between multiple strains of different sources, suggesting recent lateral transfers and/or that introns are under a strong selection pressure. Altogether, 73 group I introns were identified, inserted in essential genes from the chromosome or newly described prophages, including the first elements found within phages in bacterial plasmids. Notably, bacteriophages are an important source for spreading group I introns between strains. Furthermore, 77 group II introns were found within a diverse set of chromosomal and plasmidic genes. Unusual findings include elements located within conserved DNA metabolism and repair genes and one intron inserted within a novel retroelement. Group II introns are mainly disseminated via plasmids and can subsequently invade the host genome, in particular by coupling mobility with host cell replication. This study reveals a very high diversity and variability of mobile introns in B. cereus group strains.  相似文献   
10.
Two strains of the well-known insect pathogen and biopesticide, Bacillus thuringiensis (Bt), belonging to subspecies alesti (strain Bt5) and kurstaki (strain Bt213), were chosen for genetic characterization. The two strains belong to different serotypes and are currently classified into different subspecies, although their insecticidal activity is similar. Physical maps were constructed of Bt alesti and Bt kurstaki using Pulsed Field Gel Electrophoreses (PFGE), and the map positions of several genes were determined. The 5.5 Mb combined genetic and physical chromosome maps of the two strains were found to be indistinguishable, and the only differences detected between the strains were of extrachromosomal origin. A cryIA toxin gene probe hybridised to a chromosome fragment and to two extrachromosomal elements in both strains, migrating as 100 kb and 350 kb, respectively. In addition a cry hybridizing extrachromosomal element migrating as 80 kb was present only in Bt alesti. Both strains were also found to contain sequences hybridizing to an enterotoxin (hbla) gene probe. Such sequences were positioned on the 350 kb extrachromosomal element, as well as on the chromosome. Received: 20 April 2001 / Accepted: 29 May 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号