首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3503篇
  免费   322篇
  2023年   13篇
  2022年   13篇
  2021年   60篇
  2020年   25篇
  2019年   55篇
  2018年   67篇
  2017年   60篇
  2016年   122篇
  2015年   182篇
  2014年   219篇
  2013年   270篇
  2012年   369篇
  2011年   282篇
  2010年   219篇
  2009年   151篇
  2008年   223篇
  2007年   209篇
  2006年   173篇
  2005年   180篇
  2004年   163篇
  2003年   138篇
  2002年   136篇
  2001年   51篇
  2000年   33篇
  1999年   37篇
  1998年   25篇
  1997年   16篇
  1996年   18篇
  1995年   26篇
  1994年   9篇
  1993年   24篇
  1992年   34篇
  1991年   19篇
  1990年   17篇
  1989年   14篇
  1988年   19篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1981年   13篇
  1980年   8篇
  1977年   7篇
  1974年   7篇
  1972年   6篇
  1970年   10篇
  1969年   7篇
  1967年   6篇
排序方式: 共有3825条查询结果,搜索用时 46 毫秒
1.
Hairless (H) is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H)] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele H attP, reintroduced a wild type H genomic and a cDNA-construct (H gwt, H cwt) as well as two constructs encoding H proteins defective of Su(H) binding (H LD, H iD). Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N 5419) and Delta (Dl B2) mutants were addressed. Overall, phenotypes were largely as expected: both H LD and H iD were similar to the H attP null allele, indicating that most of H activity requires the binding of Su(H). Both rescue constructs H gwt and H cwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably H cwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, H gwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.  相似文献   
2.
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.  相似文献   
3.
Conceptually, premature initiation of post-wound angiogenesis could interfere with hemostasis, as it relies on fibrinolysis. The mechanisms facilitating orchestration of these events remain poorly understood, however, likely due to limitations in discerning the individual contribution of cells and extracellular matrix. Here, we designed an in vitro Hemostatic-Components-Model (HCM) to investigate the role of the fibrin matrix as protein factor-carrier, independent of its cell-scaffold function. After characterizing the proteomic profile of HCM-harvested matrix releasates, we demonstrate that the key pro-/anti-angiogenic factors, VEGF and PF4, are differentially bound by the matrix. Changing matrix fibrin mass consequently alters the balance of releasate factor concentrations, with differential effects on basic endothelial cell (EC) behaviors. While increasing mass, and releasate VEGF levels, promoted EC chemotactic migration, it progressively inhibited tube formation, a response that was dependent on PF4. These results indicate that the clot’s matrix component initially serves as biochemical anti-angiogenic barrier, suggesting that post-hemostatic angiogenesis follows fibrinolysis-mediated angiogenic disinhibition. Beyond their significance towards understanding the spatiotemporal regulation of wound healing, our findings could inform the study of other pathophysiological processes in which coagulation and angiogenesis are prominent features, such as cardiovascular and malignant disease.  相似文献   
4.
Hupfer  Michael  Dollan  Anja 《Hydrobiologia》2003,506(1-3):635-640
Hydrobiologia - To observe effects on the phosphorus retention mechanisms of a lake after re-colonisation by macrophytes, Potamogeton crispus L. and Elodea canadensis Michx. were planted in lab...  相似文献   
5.
Mechanics and modeling of plant cell growth   总被引:1,自引:0,他引:1  
  相似文献   
6.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
7.
8.
9.
Abstract An arg7, cw15, mt+ strain of Chlamydomonas reinhardtii (CC1618) was transformed with pARG7.8, a plasmid containing the wild-type ARG7 gene. Over 2300 arg+ transformants were selected on TAP media. Upon subsequent analysis on TAP plus cadmium plates, five of the transformants failed to grow at a level of 400 μM cadmium and were designated as cadmium sensitive (Cds) mutants. Hybridization data indicated that vector (pBR329) sequences were present in these five mutants, but not in the untransformed parental strain. Two of the mutants have been back crossed to an arg7, cw15, Cd+, mt strain (CC425) and found to have progeny which always cosegregate the arg+ and Cds phenotypesin these two mutants results from the insertion of the plasmid pARG7.8 into a gene involving cadmium detoxification, and it provides a method by which to clone the interrupted gene(s).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号