首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1593篇
  免费   138篇
  2023年   5篇
  2022年   9篇
  2021年   41篇
  2020年   24篇
  2019年   34篇
  2018年   40篇
  2017年   30篇
  2016年   70篇
  2015年   94篇
  2014年   94篇
  2013年   113篇
  2012年   124篇
  2011年   130篇
  2010年   70篇
  2009年   66篇
  2008年   79篇
  2007年   82篇
  2006年   87篇
  2005年   71篇
  2004年   57篇
  2003年   50篇
  2002年   57篇
  2001年   25篇
  2000年   18篇
  1999年   16篇
  1998年   20篇
  1997年   10篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   14篇
  1991年   19篇
  1990年   13篇
  1989年   13篇
  1988年   13篇
  1987年   10篇
  1986年   8篇
  1985年   8篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1980年   6篇
  1978年   4篇
  1976年   5篇
  1974年   5篇
  1973年   3篇
  1967年   4篇
  1966年   3篇
  1965年   4篇
  1963年   7篇
排序方式: 共有1731条查询结果,搜索用时 15 毫秒
1.
Abstract: In brain, astrocytes and endothelial cells are a major site of adenosine degradation. These two cell types, found in close apposition, constitute the wall of the brain's capillaries and serve as a site of hypoxanthine production and degradation. Both cell types possess the hypoxanthine salvage pathway and can incorporate hypoxanthine into nucleotides. This suggests that the endothelial-astrocyte anatomical complex might play an important role in the brain's purine homeostasis. To test this hypothesis, cocultures of monolayers of vascular endothelial cells and astrocytes were grown over a porous membrane, in close apposition to one another, and studies on hypoxanthine transport and metabolism to uric acid were performed. The flux of hypoxanthine across the cell layers was simultaneously determined and compared with the flux of sucrose, as a probe of passive diffusion. Our results show that in endothelial, glial, and endothelial-glial cell layers the hypoxanthine flux was greater than that of sucrose, and that the flux of hypoxanthine, but not of sucrose, was inhibited by adenine or by lowering the temperature. These results suggest that hypoxanthine moves across endothelial, glial, and endothelial-glial cell layers by a transport process. Furthermore, we found that hypoxanthine transport is enhanced when glial and endothelial cells are cocultured compared with that in glial or endothelial monolayers. In addition the coculture also resulted in a depression of xanthine oxidase activity.  相似文献   
2.
3.
The reproductive activity and the physiological state of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were investigated off the coast of NW Spain during autumn to evaluate the effect of short food resources on both populations. Phytoplankton biomass was low, and neither phytoplankton size distribution nor composition was suitable to support high reproductive rates. Accordingly, egg production rates (EPR) were much lower than maximum rates for both species, pointing to food limitation. The reproductive index (RI), which represents the proportion of females with mature gonads, was < 50% at each of the three zones into which the sampling area was divided (coast, shelf and ocean). Potential recruitment rates were very low except at some nearshore stations, where the highest concentrations of chlorophyll-a (Chl-a), diatoms, dinoflagellates and large cells were found. EPR of C. helgolandicus and C. carinatus were correlated with phytoplankton biomass and unaffected by temperature. Phytoplankton carbon ingestion explained ca. 50% of the variability in EPR for both species. At most of the stations, herbivory was insufficient to cover the carbon requirements for reproduction and respiration, so females probably fed on heterotrophic prey to meet their demands. However, given the low fecundity observed, this omnivorous diet did not seem to be optimum for reproduction, and a severe food limitation is thus suggested. Furthermore, the high C/N values measured point to a notable lipid storage, but given the low EPR found, lipid reserves were probably invested into female maintenance rather than into gonad maturation. C. helgolandicus and C. carinatus populations did not mirror phytoplankton biomass distribution, but they correlated well when considering only copepodites V (CV). The CV could be preparing for the overwintering, storing lipid reserves to ensure a successful diapause, and they could also be advected by the poleward current detected during the study. Females showed a diel feeding rhythm, with highest ingestion rates during night. From our results, it follows that C. helgolandicus and C. carinatus females did not perform diel vertical migrations. We suggest that this behaviour is likely due to the food-limiting conditions, which make it more advantageous to remain at the surface during daytime.  相似文献   
4.
Metabolic properties and subcellular localization of the biosynthesis of SM, a saponifiable 18-OH-B (18-Hydroxycorticosterone) derivative, were investigated. Homogenates biosynthesized SM at a nearly constant rate of 463 pmol/50 mg tissue during 30 min. This biosynthesis was more efficient at pH 7.4 than at pH 4.8. Not only 18-OH-B but also its less polar anhydride 18-DAL (18-Deoxyaldosterone) were good precursors. SM was reverted to these precursors both enzymatically and spontaneously, 4.8 being a more suitable pH for this reversion than 7.4. Trapping experiments demonstrated a sequence comprising, in this order, the following echelons: SM, 18-OH-B, 18-DAL, Aldosterone. The first two steps are reversible and the last two ones depend on proton concentrations. It is postulated that SM could be on a dead-end to which 18-OH-B could be deviated if Aldosterone biosynthesis became temporarily unnecessary. Also, that 18-OH-B may convert to either 18-DAL or SM for selective membrane transports, according to homeostatic requirements.  相似文献   
5.
6.
The immunosuppressive drug cyclosporin A (CsA) binds to its receptor protein cyclophilin 18 (Cyp18) in two distinct kinetic phases, while the mechanism remains elusive. Stopped-flow measurements coupled with titration and competition experiments were used to investigate the puzzling two-phase process of CsA and Cyp18 interaction. This study leads to the dissection of different conformational fractions of either direct fast binding or slow binding with rate-limiting conformational inter-conversion and the real-time measurement of kon value (8.34 ± 0.22 x106 M-1s-1) in solution. Furthermore, our study indicates that the structure of CsA during dissociation from the protein possesses a distribution of conformations different from those in solution under equilibrium condition.  相似文献   
7.
Stroke is the most devastating complication after ventricular assist device (VAD) implantation with a 19% incidence and 65% mortality in the pediatric population. Current pediatric VAD technology and anticoagulation strategies alone are suboptimal. VAD implantation assisted by computational methods (CFD) may contribute reducing the risk of cerebral embolization. Representative three-dimensional aortic arch models of an infant and a child were generated. An 8 mm VAD outflow-graft (VAD-OG) anastomosed to the aorta was rendered and CFD was applied to study blood flow patterns. Particle tracks, originating in the VAD, were computed with a Lagrangian phase model and the percentage of particles entering the cerebral vessels was calculated. Eight implantation configurations (infant = 5 and child = 3) and 5 particle sizes (0.5, 1, 2, 3, and 4 mm) were considered. For the infant model, percentage of particles entering the cerebral vessels ranged from 15% for a VAD-OG anastomosed at 90° to the aorta, to 31% for 30° VAD-OG anastomosis (overall percentages: X2 = 10,852, p < 0.0001). For the child model, cerebral embolization ranged from 9% for the 30° VAD-OG anastomosis to 15% for the 60° anastomosis (overall percentages: χ2 = 10,323, p < 0.0001). Using detailed CFD calculations, we demonstrate that the risk of stroke depends significantly on the VAD implantation geometry. In turn, the risk probably depends on patient-specific anatomy. CFD can be used to optimize VAD implantation geometry to minimize stroke risk.  相似文献   
8.
Although UT-2 cells, a mutant clone of Chinese hamster ovary cells, have been shown to require mevalonate for growth due to a deficiency in 3-hydroxy-3-methylglutaryl-CoA reductase, the precise mevalonate-derived product(s) essential for proliferation has not been identified. These studies show that UT-2 cells proliferate in the presence of free geranylgeraniol (GG-OH), as well as mevalonate. Cell growth was optimal when the culture medium was supplemented with 5–10 μMGG-OH. Under these growth conditions [3H]GG-OH is actively incorporated into UT-2 proteins. Prominent [3H]geranylgeranylated polypeptides in the size range (19–27 kDa) of the small GTP-binding proteins are observed by SDS–PAGE. Analysis of the butanol-soluble products released from the metabolically labeled proteins by digestion with Pronase E reveals that the proteins contain [3H]geranylgeranylated cysteine residues. Even though [3H]farnesol is also incorporated into cysteinyl residues of a different set of UT-2 proteins, farnesol added at 10 μMdid not satisfy the mevalonate requirement for cell growth. These results show that UT-2 cells divide in the presence of exogenously supplied GG-OH, providing evidence that one or more geranylgeranylated proteins are essential for entry of UT-2 cells, and probably other mammalian cells, into the cell cycle.  相似文献   
9.
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号