首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   16篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   13篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1985年   2篇
  1982年   4篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
1.
2.
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.  相似文献   
3.
The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein–protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein–protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein–protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein–protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2′ position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein–protein interfaces is insignificant.  相似文献   
4.
Extraction, thin-layer chromatography, and gas chromatography–mass spectrometry of leaf surface waxes of Momordica charantia L. (Cucurbitaceae) revealed that 20 n-alkanes between n-C15 and n-C36, except n-C34 and n-C35, commonly occur in young, mature, and senescent stages. Hentriacontane, hentriacontane, and hexatriacontane were the predominant compounds in young, mature, and senescent leaves, respectively. The cuticular alkanes from young, mature, and senescent leaves attracted the female insect, Epilachna dodecastigma (Wied.), at 25–400, 25–400, and 100–400 μg concentrations, respectively, whereas the mixtures of synthetic alkanes mimicking cuticular alkanes of young, mature, and senescent leaves showed attraction at 100–400, 100–400, and 200–400 μg concentrations, respectively, in Y-shaped glass tube olfactometer bioassay. The difference in insect attraction is probably due to the absence of branched-chain alkanes in the synthetic mixtures. Individual synthetic heptacosane, nonacosane, and hentriacontane at 28.19–56.90, 32.04–64.08, and 60.44–120.88 μg, respectively, elicited attraction of the insect. A synthetic blend of 4.82, 4.91, 5.71, 6.74, 56.39, 7.94, 62.42, 120.88, and 36.33 μg of nonadecane, eicosane, heneicosane, pentacosane, heptacosane, octacosane, nonacosane, hentriacontane, and tritriacontane, respectively, was most attractive to the insect.  相似文献   
5.
Reviews in Environmental Science and Bio/Technology - In the past few decades, pollution from microplastics has emerged as an important issue on a global scale. These plastic particles are mainly...  相似文献   
6.
7.
8.
Molecular techniques play a critical role in studies of phylogeny and, thus, have been applied to understand the distribution and extent of genetic variation within and between species. In the present study, a genetic analysis was undertaken using molecular markers (9 ISSR and 13 SSR) on 60 ginger cultivars from different regions of the eastern coast of India (Odisha). The data obtained with 22 polymorphic markers revealed moderate to high diversity in the collection. Both ISSR and SSR markers were efficient in distinguishing all the 60 ginger cultivars. A total of 42 and 160 polymorphic bands were observed with ISSR and SSR markers, respectively. However, SSR markers were observed to be better at displaying average polymorphism (63.29%) than ISSR markers (55%). Analysis of molecular variance results showed that 52 and 66% of the variation occurred among different ginger populations, whereas 48 and 34% of the variation was found within populations, respectively, using ISSR and SSR markers, indicating that ginger cultivars display significant genetic diversity at the population level. Principal coordinates analysis and the dendrogram constructed out of combined data of both markers showed grouping of ginger accessions to their respective area of collection, indicating geographical closeness due to genetic similarity irrespective of the relationship that exists at the morphological level.  相似文献   
9.
Wag31 of Mycobacterium tuberculosis belongs to the DivIVA family of proteins known to regulate cell morphology in Gram-positive bacteria. Here we demonstrate an unrecognized, novel role of Wag31 in oxidatively stressed mycobacteria. We report the cleavage of penicillin-binding protein 3 (PBP3) by the intramembrane metalloprotease Rv2869c (MSMEG_2579) in oxidatively stressed cells. Amino acids 102A and 103A of PBP3 are required for Rv2869c-mediated cleavage. Wag31MTB, by virtue of its interaction with PBP3 through amino acid residues 46NSD48, protects it from oxidative stress-induced cleavage. PBP3 undergoes cleavage in Mycobacterium smegmatis (strain PM2) harbouring wag31 (Δ46NSD48) instead of the wild type, with concomitant reduction in ability to withstand oxidative stress. Overexpression of Wag31(Δ46NSD48) attenuates the survival of M. tuberculosis in macrophages with concomitant cleavage of PBP3, and renders the organism more susceptible towards hydrogen peroxide as well as drugs which generate reactive oxygen species, namely isoniazid and ofloxacin. We propose that targeting Wag31 could enhance the activity of mycobactericidal drugs which are known to generate reactive oxygen species.  相似文献   
10.
We investigate the role of water molecules in 89 protein–RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein–RNA interfaces are hydrated less than protein–DNA interfaces, but more than protein–protein interfaces. Majority of the waters at protein–RNA interfaces makes multiple H-bonds; however, a fraction do not make any. Those making H-bonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein–DNA interfaces, mainly due to the presence of the 2′OH, the ribose in protein–RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein–RNA interfaces is hydrated more than the major groove, while in protein–DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein–RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein–RNA recognition and should be carefully treated while engineering protein–RNA interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号