首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有31条查询结果,搜索用时 468 毫秒
1.
The structures and conformational peculiarities of five members of the callatostatin family of neuropeptides, i.e. Leu- and Met-callatostatins, ranging in size from 8 to 16 amino acid residues have been investigated by a theoretical conformational analysis method. A comparative analysis of the conformational flexibilities of Met-callatostatin with those of the hydroxylated analogues, [Hyp2]- and [Hyp3]-Met-callatostatin has been carried out. Helically packed C-terminal pentapeptide in the structure of all investigated Leu-callatostatins are shown to be possible. The reason for the great number low-energy conformers for the callatostatin N-terminus is discussed.  相似文献   
2.
The toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine (2'Et-MPTP), and their corresponding pyridinium species was studied in the rat pheochromocytoma PC12 cell line. MPTP and its analogues are known to be metabolized by monoamine oxidase (MAO) to dihydropyridinium intermediates which are further transformed, either enzymatically or spontaneously, into pyridinium species. MAO activity in PC12 cells is almost exclusively of the A form, and 2'Et-MPTP is a good substrate for both MAO-A and MAO-B. In contrast, MPTP is a poor substrate for MAO-A, but a good substrate for MAO-B. 2'Et-MPTP caused considerably more cell death than MPTP in the PC12 cells. However, 1-methyl-4-(2'-ethylphenyl)pyridinium and 1-methyl-4-phenylpyridinium, the corresponding pyridinium species formed from 2'Et-MPTP and MPTP, respectively, were equipotent as toxins. The toxic effects of the tetrahydropyridines and their corresponding pyridiniums were both concentration- and time-dependent. Measurements of the levels of the pyridinium species formed and the remaining tetrahydropyridine in the media indicated that 2'Et-MPTP was converted about five to seven times more readily into its toxic pyridinium species than was MPTP. There was, moreover, an excellent correlation between amount of pyridinium formed and cell death. There was also a parallel between the capacity of clorgyline and pargyline, irreversible MAO inhibitors, to decrease the formation of the pyridinium species and their capacity to protect against the toxic actions of the tetrahydropyridines. These data are consistent with the concept that the MAO-A-dependent formation of the pyridinium species from the tetrahydropyridine is a prerequisite for toxicity in PC12 cells.  相似文献   
3.
Integrated cultivation of salmonids and seaweeds in open systems   总被引:2,自引:2,他引:0  
Bacterial abundance and production in a vertical profile in Lake Kariba (17dgS), Zimbabwe, were affected by solar irradiance. At the surface, 1.87 × 109 bacteria 1–1 were found and abundance peaked at 10 m (2.5 × 109 bacteria l-1), then decreasing with depth. Bacterial reproduction at the surface(0.145 µg C1–1 h–1) was nearly four times less than the production at 10 m although bacterial numbers were only 26% less. Thus, bacterial production per cell was lower at the surface than deeper down, suggesting that bacterial production is inhibited at the surface.Bacterial production in GF/F filtered lake water in Whirl Pack bags showed an exponential decrease down to 3 m depth. The inhibition was well in accordance with light extinction in the UV region. Phosphatase activity was low in light exposed bags compared to dark, indicating photolysis of extracellular enzymes, or phototransformation of recalcitrant DOM, which substitutes enzyme activity. Hypolimnetic enzyme activity was less affected by solar light than epilimnetic.  相似文献   
4.
l-DOPA Cytotoxicity to PC12 Cells in Culture Is via Its Autoxidation   总被引:16,自引:1,他引:15  
Abstract: The mechanism of cytotoxicity of l -DOPA was studied in the rat pheochromocytoma PC12 cell line. The cytotoxicity of l -DOPA to PC12 cells was time and concentration dependent. Carbidopa, which inhibited the conversion of l -DOPA to dopamine, did not protect against l -DOPA cytotoxicity in PC12 cells. Furthermore, clorgyline, a selective inhibitor of monoamine oxidase type A, and pargyline, an inhibitor of both monoamine oxidase types A and B, both did not have an effect on l -DOPA toxicity. These findings suggest that cytotoxicity was not due to dopamine formed from l -DOPA. Catalase or superoxide dismutase each partially protected against l -DOPA toxicity in PC12 cells. In combination, the effects were synergistic and provided almost total protection against cytotoxicity. 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist of non-NMDA receptors, did not protect against l -DOPA toxicity. These data suggest that toxicity of l -DOPA is most likely due to the action of free radicals formed as a result of its autoxidation. Furthermore, these findings suggest that patients on long-term l -DOPA therapy are potentially at risk from the toxic intermediates formed as a result of its autoxidation.  相似文献   
5.
Large-conductance calcium-activated potassium (K(Ca)) channels regulate the physiological functions of many tissues, including cerebrovascular smooth muscle. l-Glutamic acid (glutamate) is the principal excitatory neurotransmitter in the central nervous system, and oxygen tension is a dominant local regulator of vascular tone. In vivo, glutamate and hypoxia dilate newborn pig cerebral arterioles, and both dilations are blocked by inhibition of carbon monoxide (CO) production. CO dilates cerebral arterioles by activating K(Ca) channels. Therefore, the present study was designed to investigate the effects of glutamate and hypoxia on cerebral CO production and the role of K(Ca) channels in the cerebral arteriolar dilations to glutamate and hypoxia. In the presence of iberiotoxin or paxilline that block dilation to the K(Ca) channel opener, NS-1619, neither CO nor glutamate dilated pial arterioles. Conversely, neither paxilline nor iberiotoxin inhibited dilation to acute severe or moderate prolonged hypoxia. Both glutamate and hypoxia increased cerebrospinal fluid (CSF) CO concentration. Iberiotoxin that blocked dilation to glutamate did not attenuate the increase in CSF CO. The guanylyl cyclase inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), which blocked dilation to sodium nitroprusside, did not inhibit dilation to hypoxia. These data suggest that dilation of newborn pig pial arterioles to glutamate is mediated by activation of K(Ca) channels, consistent with the intermediary signal being CO. Surprisingly, although 1) heme oxygenase (HO) inhibition attenuates dilation to hypoxia, 2) hypoxia increases CSF CO concentration, and 3) K(Ca) channel antagonists block dilation to CO, neither K(Ca) channel blockers nor ODQ altered dilation to hypoxia, suggesting the contribution of the HO/CO system to hypoxia-induced dilation is not by stimulating vascular smooth muscle K(Ca) channels or guanylyl cyclase.  相似文献   
6.
Ohne Zusammenfassung
In memoriam Professor Dr. M.J. Sirks
  相似文献   
7.
8.
Arachidonic acid (AA) and prostaglandin (PG) E(2) stimulate carbon monoxide (CO) production, and AA metabolism is known to be associated with the generation of reactive oxygen species (ROS). This study was conducted to address the hypothesis that CO and/or ROS mediate cerebrovascular dilation in newborn pigs. Experiments were performed on anesthetized newborn pigs with closed cranial windows. Different concentrations of AA (10(-8)-10(-6) M), PGE(2) (10(-8)-10(-6) M), iloprost (10(-8)-10(-6) M), and their vehicle (artificial cerebrospinal fluid) were given. Piglets with PGE(2) and iloprost received indomethacin (5 mg/kg iv) to inhibit cyclooxygenase. AA, PGE(2), and iloprost caused concentration-dependent increases in pial arteriolar diameter. The effects of both AA and PGE(2) in producing cerebral vascular dilation and associated CO production were blocked by the heme oxygenase inhibitor chromium mesoporphyrin (2 × 10(-5) M), but not by the prostacyclin analog, iloprost. ROS inhibitor tempol (SOD mimetic) (1 × 10(-5) M) and the H(2)O(2) scavenger catalase (1,000 U/ml) also do not block these vasodilator effects of AA and PGE(2). Heme-L-lysinate-induced cerebrovascular dilation and CO production was blocked by chromium mesoporphyrin. Hypoxanthine plus xanthine oxidase, a combination that is known to generate ROS, caused pial arteriolar dilation and CO production that was inhibited by tempol and catalase. These data suggest that AA- and PGE(2)-induced cerebral vascular dilation is mediated by CO, independent of ROS.  相似文献   
9.
The human embryonal carcinoma cell lines Tera-2 clone 13 and NTera-2 clone D1 can be induced by retinoic acid to differentiate in vitro into neuroectodermal derivatives. The undifferentiated cells are rapidly proliferating and tumorigenic, whereas retinoic-acid-treated cells possess a decreased growth rate, lose their transformed phenotype and show a finite lifespan. Differentiation is accompanied by a marked increase in the levels of mRNA for TGF-beta 1 and TGF-beta 2 and the production of TGF-beta activity. Just like murine embryonal carcinoma cells the growth of Tera-2 clone 13 cells is not affected by the addition of either TGF-beta 1 or TGF-beta 2 to the culture medium. In contrast to published data on murine embryonal carcinoma cells, Tera-2 clone 13 and NTera-2 clone D1 cells bind TGF-beta 1 with high affinity, which is due to the presence of type-III TGF-beta receptors. Furthermore, and again in contrast to murine embryonal carcinoma cells, treatment of the human embryonal carcinoma cells with retinoic acid causes a nearly complete loss of TGF-beta 1 binding sites. These results are discussed in the light of similarities and differences in the regulation of growth and differentiation of human and murine embryonal carcinoma cell lines.  相似文献   
10.
Products of arachidonic acid (AA) metabolism by cyclooxygenase (Cox) are important in regulation of neonatal cerebral circulation. The brain and cerebral microvessels also express heme oxygenase (HO) that metabolizes heme to carbon monoxide (CO), biliverdin, and iron. The purpose of this study in newborn pig cerebral microvessels was to address the hypothesis that Cox products affect HO activity and HO products affect Cox activity. AA (2.0-20 microM) increased prostaglandin E2 (PGE2) measured by radioimmunoassay (RIA) and also CO measured by gas chromatography/mass spectrometry (GC/MS). Further, 10(-4) M indomethacin, which inhibited Cox, reduced both AA and heme-induced CO production. Conversely, neither exogenous 2 x 10(-6) M heme, which markedly increased CO production, nor the inhibitor of HO, chromium mesoporphyrin, altered PGE2 synthesis. Because AA metabolism by Cox generates both prostanoids and superoxides, we determined the effects of the predominant prostanoid and superoxide on CO production. Although PGE2 caused a small increase in CO production, xanthine oxidase plus hypoxanthine, which produces superoxide, strongly stimulated the production of CO by cerebral microvessels. This increase was mildly attenuated by catalase. These data suggest that Cox-catalyzed AA metabolites, most likely superoxide and/or a subsequent reactive oxygen species, increase cerebrovascular CO production. This increase seems to be caused, at least in part, by the elevation of HO-2 catalytic activity. Conversely, Cox activity is not affected by HO-catalyzed heme metabolites. These data suggest that some cerebrovascular functions attributable to Cox activity could be mediated by CO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号