首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2012年   2篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 484 毫秒
1
1.
2.

Introduction

The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs.

Methods

Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR.

Results

Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs.

Conclusions

Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.  相似文献   
3.
Transforming growth factor alpha (TGFα) is a potent ligand of the epidermal growth factor receptor (EGFR). EGFR is frequently over-expressed in epithelial tumors and endogenous ligands, mostly TGFα, are frequently co-expressed with EGFR, potentially resulting in autocrine stimulation of tumor cell growth. Therefore, different therapeutic approaches aim for the inactivation of TGFα/EGF/EGFR signaling system, but no approach is based on TGFα as a target. The principal goal of this work was to assess the potential of an active specific immunotherapy approach to block the TGFα/EGFR autocrine loop. For the proof of the concept, a fusion protein between human TGFα (hTGFα) and P64k protein from Neisseria meningitidis was generated, and its immunogenicity characterized in a mouse model using different adjuvants. All immunogens were effective for the generation of specific humoral responses against hTGFα. The inmunodominant epitope of hTGFα when immunizing mice with the fusion protein involved the C-loop/C-terminal region. This region includes key residues for hTGFα binding to EGFR. The anti-hTGFα immune mice sera recognized the natural hTGFα precursor in A431 cells and hTGFα-transfected 3T3 fibroblasts as revealed by flow cytometry analysis and immunoblotting. They inhibited the binding of 125I-TGFα to the EGFR, EGFR-autophosphorylation, and downstream activation of MAP kinases as well as proliferation of two EGFR-expressing human carcinoma cell lines. These data suggest that EGFR signaling activation by the hTGFα autocrine loop may be inhibited in vivo by induction of specifically blocking antibodies. The fusion protein reported in this paper could be a potential immunogen for the development of a new cancer vaccine. Part of this work was supported by a travel scholarship sponsored by the Boehringer Ingelheim Fonds  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号