首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   7篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
2.
We have previously shown that NF-κB nuclear translocation can be observed upon human immunodeficiency virus type 1 (HIV-1) binding to cells expressing the wild-type CD4 molecule, but not in cells expressing a truncated form of CD4 that lacks the cytoplasmic domain (M. Benkirane, K.-T. Jeang, and C. Devaux, EMBO J. 13:5559–5569, 1994). This result indicated that the signaling cascade which controls HIV-1-induced NF-κB activation requires the integrity of the CD4 cytoplasmic tail and suggested the involvement of a second protein that binds to this portion of the molecule. Here we investigate the putative role of p56lck as a possible cellular intermediate in this signal transduction pathway. Using human cervical carcinoma HeLa cells stably expressing CD4, p56lck, or both molecules, we provide direct evidence that expression of CD4 and p56lck is required for HIV-1-induced NF-κB translocation. Moreover, the fact that HIV-1 stimulation did not induce nuclear translocation of NF-κB in cells expressing a mutant form of CD4 at position 420 (C420A) and the wild-type p56lck indicates the requirement for a functional CD4-p56lck complex.  相似文献   
3.
4.
In this article, we present a computational multiscale model for the characterization of subcellular proteins. The model is encoded inside a simulation tool that builds coarse-grained (CG) force fields from atomistic simulations. Equilibrium molecular dynamics simulations on an all-atom model of the actin filament are performed. Then, using the statistical distribution of the distances between pairs of selected groups of atoms at the output of the MD simulations, the force field is parameterized using the Boltzmann inversion approach. This CG force field is further used to characterize the dynamics of the protein via Brownian dynamics simulations. This combination of methods into a single computational tool flow enables the simulation of actin filaments with length up to 400 nm, extending the time and length scales compared to state-of-the-art approaches. Moreover, the proposed multiscale modeling approach allows to investigate the relationship between atomistic structure and changes on the overall dynamics and mechanics of the filament and can be easily (i) extended to the characterization of other subcellular structures and (ii) used to investigate the cellular effects of molecular alterations due to pathological conditions.  相似文献   
5.
There is growing evidence that high concentrations of nitric oxide (NO), generated by activated astrocytes, might be involved in a variety of neurodegenerative diseases, such as Alzheimer's disease, ischemia and epilepsy. It has recently been suggested that glial cells may produce NO under superoxide radical stimulation by enzyme-independent mechanism. This suggests that also natural antioxidants may have therapeutical relevance in neurodegenerative diseases. Studies of Bhattacharya et al. have evidenced that Bacopa monniera (BM) (family Scrophulariaceae), an Ayurvedic medicinal plant clinically used for memory enhancing, epilepsy, insomnia and as a mild sedative, is able to reduce the memory-dysfunction in rat models of Alzheimer's disease, but the molecular mechanisms of this action are yet to be determined. In the present study, we examined the effect of a methanolic extract of BM on toxicity induced by the nitric oxide donor, S-nitroso-N-acetyl-penicillamine (SNAP), in culture of purified rat astrocytes. Our results indicate that, after 18 h of treatment, SNAP induced an increase in the production of reactive species, but did not induce the rupture of cellular membrane. Conversely, this NO donor induced a fragmentation of genomic DNA compared to control astrocytes. The extract of BM inhibited the formation of reactive species and DNA damage in a dose dependent manner. This data supports the traditional use of BM and indicates that this medicinal plant has a therapeutic potential in treatment or prevention of neurological diseases.  相似文献   
6.
7.
L-Propionylcarnitine, a propionyl ester of L-carnitine, increases the intracellular pool of L-carnitine. It exhibits a high affinity for the enzyme carnitine acetyltransferase (CAT) and, thus, is readily converted into propionyl-coenzyme A and free carnitine. It has been reported that L-propionylcarnitine possesses a protective action against heart ischemia–reperfusion injury; however, the antioxidant mechanism is not yet clear. L-Propionylcarnitine might reduce the hydroxyl radical production in the Fenton system, by chelating the iron required for the generation of hydroxyl radicals. To obtain a better insight into the antiradical mechanism of L-propionylcarnitine, the present research analyzed the superoxide scavenging capacity of L-propionylcarnitine and its effect on linoleic acid peroxidation. In addition, the effect of L-propionylcarnitine against DNA cleavage was estimated using pBR322 plasmid. We found that L-propionylcarnitine showed a dose-dependent free-radical scavenging activity. In fact, it was able to scavenge superoxide anion, to inhibit the lipoperoxidation of linoleic acid, and to protect pBR322 DNA from cleavage induced by H2O2 UV-photolysis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Two plasmids containing rat thyroglobulin cDNA sequences have been constructed and characterized. A plasmid with a 500-bp insert (pRT6) was isolated and identified as thyroglobulin-specific on the basis of the tissue specificity of the inserted sequence and of its ability to retain thyroglobulin mRNA on a nitrocellulose filter. The cDNA insert in pRT6 was subsequently used to screen a rat thyroid cDNA library constructed with large cDNA. A plasmid was found containing a 1700-bp insert. The polarity and the fidelity of the insert is demonstrated by S1 mapping.  相似文献   
9.
In recent years, genistein has received considerable attention because epidemiologic studies showed that consumption of soybean-containing diets was associated with a lower incidence of certain human cancers in Asian populations. In vitro studies further showed that such chemopreventive and antineoplastic effects were associated with the antioxidant activity of genistein and inhibitor activities on cell proliferation and angiogenesis. Genistein was shown to arrest the growth of malignant melanoma in vitro and to inhibit ultraviolet (UV) light-induced oxidative DNA damage. Recently, it has been demonstrated that genistin, as other flavonoid glycosides, is partly absorbed without previous cleavage and does not have to be hydrolyzed to be biologically active. Therefore, not only isoflavone aglycons, but also glycosides can be of physiological relevance. In the present study, we evaluated in cell-free systems the effect of genistin and daidzin on pBR322 DNA cleavage induced by hydroxyl radicals, generated from UV photolysis of hydrogen peroxide, and their superoxide anion scavenging capacity. In addition, we investigated the growth inhibitory activity of these isoflavones against human melanoma cell line (M14). Under our experimental conditions, genistin and daidzin showed a protective effect on DNA damage and exhibited a superoxide dismutase-like effect, but only genistin was able to reduce significantly the vitality of M14 cells, confirming the importance of the 5,7-dihydroxy structure in the A ring. These results suggest that also genistin, due to its antioxidant and anticarcinogenic properties, contributes to the overall biological activity of soy and could have promising applications in the field of dermatology.  相似文献   
10.
The anaphase promoting complex/cyclosome (APC/C) is crucial to the control of cell division (for a review, see ref. 1). It is a multi-subunit ubiquitin ligase that, at defined points during mitosis, targets specific proteins for proteasomal degradation. The APC/C is itself regulated by the spindle or kinetochore checkpoint, which has an important role in maintaining genomic stability by preventing sister chromatid separation until all chromosomes are correctly aligned on the mitotic spindle. The spindle checkpoint regulates the APC/C by inactivating Cdc20, an important co-activator of the APC/C. There is also evidence to indicate that the spindle checkpoint components and Cdc20 are spatially regulated by the mitotic apparatus, in particular they are recruited to improperly attached kinetochores. Here, we show that the APC/C itself co-localizes with components of the spindle checkpoint to improperly attached kinetochores. Indeed, we provide evidence that the spindle checkpoint machinery is required to recruit the APC/C to kinetochores. Our data indicate that the APC/C could be regulated directly by the spindle checkpoint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号