首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   103篇
  国内免费   2篇
  2023年   6篇
  2022年   10篇
  2021年   36篇
  2020年   17篇
  2019年   24篇
  2018年   49篇
  2017年   31篇
  2016年   52篇
  2015年   70篇
  2014年   83篇
  2013年   108篇
  2012年   109篇
  2011年   97篇
  2010年   70篇
  2009年   50篇
  2008年   70篇
  2007年   71篇
  2006年   91篇
  2005年   63篇
  2004年   51篇
  2003年   46篇
  2002年   31篇
  2001年   32篇
  2000年   26篇
  1999年   19篇
  1998年   13篇
  1997年   7篇
  1996年   15篇
  1995年   7篇
  1994年   8篇
  1993年   10篇
  1992年   27篇
  1991年   22篇
  1990年   20篇
  1989年   17篇
  1988年   19篇
  1987年   16篇
  1986年   13篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1981年   4篇
  1979年   10篇
  1978年   3篇
  1976年   6篇
  1974年   5篇
  1973年   4篇
  1971年   4篇
  1970年   6篇
  1969年   5篇
排序方式: 共有1589条查询结果,搜索用时 15 毫秒
1.
2.
3.
In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB25R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB25R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance.  相似文献   
4.
5.
In the design of potent and selective sphingosine-1-phosphate receptor agonists, we were able to identify two series of molecules based on phenylamide and phenylimidazole analogs of FTY-720. Several designed molecules in these scaffolds have demonstrated selectivity for S1P receptor subtype 1 versus 3 and excellent in vivo activity in mouse. Two molecules PPI-4621 (4b) and PPI-4691 (10a), demonstrated dose responsive lymphopenia, when administered orally.  相似文献   
6.
Internal Model Control (IMC) and Model Predictive Control (MPC), the two most important members of model based controllers, are favourable alternatives for control of nonlinear processes. However, the performance of these controllers deteriorates drastically in the presence of substantial process-model mismatch. Hu and Rangaiah (1998) proposed feedback augmentation for nonlinear IMC (hence named Augmented IMC, AuIMC) for improving control in the presence of modelling errors, and demonstrated its success on a neutralization process. In the present study, IMC, MPC and AuIMC strategies are tested in a more difficult case of multi-input multi-output (MIMO) operation of a highly nonlinear continuous fermenter. A new control configuration is introduced as the conventional configuration is not applicable. Simulation results for different modelling errors show that IMC is better than MPC for fermenter control. The advantage of augmentation as in AuIMC manifests in the significantly improved regulatory control of the fermenter.  相似文献   
7.
8.
9.
Isolation and characterization of promoters are important in understanding gene regulation and genetic engineering of crop plants. Earlier, a pentatricopeptide repeat protein (PPR) encoding gene (At2g39230), designated as Lateral Organ Junction (LOJ) gene, was identified through T-DNA promoter trapping in Arabidopsis thaliana. The upstream sequence of the LOJ gene conferred on the reporter gene a novel LOJ-specific expression. The present study was aimed at identifying and characterizing the cis-regulatory motifs responsible for tissue-specific expression in the −673 and +90 bases upstream of the LOJ gene recognized as LOJ promoter. In silico analysis of the LOJ promoter revealed the presence of a few relevant regulatory motifs and a unique feature like AT-rich inverted repeat. Deletion analysis of the LOJ promoter confirmed the presence of an enhancer-like element in the distal region (−673/−214), which stimulates a minimal promoter-like sequence in the −424/−214 region in a position and orientation autonomous manner. The −136/+90 region of the LOJ promoter was efficient in driving reporter gene expression in tissues like developing anthers and seeds of Arabidopsis. A positive regulation for the seed- and anther-specific expression module was contemplated within the 5′ untranslated region of the LOJ gene. However, this function was repressed in the native context by the lateral organ junction-specific expression. The present study has led to the identification of a novel lateral organ junction-specific element and an enhancer sequence in Arabidopsis with potential applications in plant genetic engineering.  相似文献   
10.
MIC-3 is a recently identified gene family shown to exhibit increased root-specific expression following nematode infection of cotton plants that are resistant to root-knot nematode. Here, we cloned and sequenced MIC-3 genes from selected diploid and tetraploid cotton species to reveal sequence differences at the molecular level and identify chromosomal locations of MIC-3 genes in Gossypium species. Detailed sequence analysis and phylogenetic clustering of MIC-3 genes indicated the presence of multiple MIC-3 gene members in Gossypium species. Haplotypes of a MIC-3 gene family member were discovered by comparative analysis among consensus sequences across genotypes within an individual clade in the phylogram to overcome the problem of duplicated loci in the tetraploid cotton. Deficiency tests of the SNPs delimited six At-genome members of the MIC-3 family clustered to chromosome arm 4sh, and one Dt-genome member to chromosome 19. Clustering was confirmed by long-PCR amplification of the intergenic regions using At-genome-specific MIC-3 primer pairs. The clustered distribution may have been favored by selection for responsiveness to evolving disease and/or pest pressures, because large variants of the MIC-3 gene family may have been recovered from small physical areas by recombination. This could give a buffer against selection pressure from a broad range of pest and pathogens in the future. To our knowledge, these are the first results on the evolution of clustering and genome-specific haplotype members of a unique cotton gene family associated with resistant response against a major pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号