首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In pursuit of potent and selective sphingosine-1-phosphate receptor agonists, we have utilized previously reported phenylamide and phenylimidazole scaffolds to explore extensive side-chain modifications to generate new molecular entities. A number of designed molecules demonstrate good selectivity and excellent in vitro and in vivo potency in both mouse and rat models. Oral administration of the lead molecule 11c (PPI-4667) demonstrated potent and dose-responsive lymphopenia.  相似文献   

2.
In pursuit of a potent and highly selective sphingosine-1-phosphate receptor agonists with an improved in vivo conversion of the precursor to the active phospho-drug, we have utilized previously reported phenylamide and phenylimidazole scaffolds to identify a selectivity enhancing moiety (SEM) and selectivity enhancing orientation (SEO) within both pharmacophores. SEM and SEO have allowed for over 100 to 500-fold improvement in selectivity for S1P receptor subtype 1 over subtype 3. Utility of SEM and SEO and further SAR study allowed for discovery of a potent and selective preclinical candidate PPI-4955 (21b) with an excellent in vivo potency and dose responsiveness and markedly improved overall in vivo pharmacodynamic properties upon oral administration.  相似文献   

3.
Agonism of S1P1 receptor has been proven to be responsible for peripheral blood lymphopenia and elicts the identification of various S1P1 modulators. In this paper we described a series of oxadiazole-based S1P1 direct-acting agonists disubstituted on terminal benzene ring, with high potency for S1P1 receptor and favorable selectivity against S1P3 receptor. In addition, two representative agents named 16-3b and 16-3g demonstrated impressive efficacy in lymphocyte reduction along with reduced effect on heart rate when orally administered. Furthermore, these compounds have been shown to possess desired pharmacokinetic (PK) and physicochemical profiles. The binding mode between 16-3b and the activated S1P1 model was also studied.  相似文献   

4.
This letter describes the discovery of a novel series of tetrahydroisoquinoline (THIQ)-derived small molecules that potently inhibit both human T-cell migration and super-antigen induced T-cell activation through disruption of the binding of integrin LFA-1 to its receptor, ICAM-1. In addition to excellent in vitro potency, 6q shows good pharmacokinetic properties and its ethyl ester (6t) demonstrates good oral bioavailability in both mouse and rat. Either intravenous administration of 6q or oral administration of its ethyl ester (6t) produced a significant reduction of neutrophil migration in a thioglycollate-induced murine peritonitis model.  相似文献   

5.
Isocoumarins are lactone ring-containing natural products, are quite abundant in microbes and higher plants, and have been shown to exhibit a broad range of pharmacological properties. However, the molecular mechanism or target of this class of molecules is not known. In this study, we have synthesized 14 isocoumarin derivatives and evaluated for their activity at TrkB receptor in transiently transfected HEK293T cells. We identified 8-hydroxy-3-aryl isocoumarin (1) as a high-affinity agonist at the TrkB receptor. We also demonstrated that isocoumarin 1 activated endogenously TrkB receptor in primary cortical neurons and modulated various markers of synaptic plasticity, and increased dendritic arborization. These results indicate therapeutic potential and molecular target of 8-hydroxy-3-aryl isocoumarin 1 for the treatment of various CNS disorders.  相似文献   

6.
Non-steroidal 1-methyl-1H-pyrrole-2-carbonitrile containing tetrahydronaphthalenes and acyclic derivatives were evaluated as novel series of progesterone receptor (PR) antagonists using the T47D cell alkaline phosphatase assay. Moderate to potent PR antagonists were achieved with these scaffolds. Several compounds (e.g., 15 and 20) demonstrated low nanomolar PR antagonist potency and good selectivity versus other steroid receptors.  相似文献   

7.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

8.
Utilizing a combination of high-throughput and multi-step synthesis, SAR in a novel series of M1 acetylcholine receptor antagonists was rapidly established. The efforts led to the discovery the highly potent M1 antagonists 6 (VU0431263), and 8f (VU0433670). Functional Schild analysis and radioligand displacement experiments demonstrated the competitive, orthosteric binding of these compounds; human selectivity data are presented.  相似文献   

9.
The therapeutic success of peptide glucagon-like peptide-1 (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small-molecule GLP-1 receptor agonists. In this study, two series of new pyrimidine derivatives were designed and synthesized using an efficient route, and were evaluated in terms of GLP-1 receptor agonist activity. In the first series, novel pyrimidines substituted at positions 2 and 4 with groups varying in size and electronic properties were synthesized in a good yield (78–90%). In the second series, the designed pyrimidine templates included both urea and Schiff base linkers, and these compounds were successfully produced with yields of 77–84%. In vitro experiments with cultured cells showed that compounds 3a and 10a (10?15–10?9 M) significantly increased insulin secretion compared to that of the control cells in both the absence and presence of 2.8 mM glucose; compound 8b only demonstrated significance in the absence of glucose. These findings represent a valuable starting point for the design and discovery of small-molecule GLP-1 receptor agonists that can be administered orally.  相似文献   

10.
A series of 2-(3,5-substituted 4-aminophenyl)acetamide and propanamide derivatives were investigated as human TRPV1 antagonists. The analysis of the structure-activity relationship indicated that 2-(3,5-dihalo 4-aminophenyl)acetamide analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed improved potency compared to the corresponding propanamides. The most potent antagonist (36) exhibited potent and selective antagonism for hTRPV1 not only to capsaicin but also to NADA and elevated temperature; however, it only displayed weak antagonism to low pH. Further studies indicated that oral administration of antagonist 36 blocked the hypothermic effect of capsaicin in vivo but demonstrated hyperthermia at that dose. A docking study of 36 was performed in our established hTRPV1 homology model to understand its binding interactions with the receptor and to compare with that of previous antagonist 1.  相似文献   

11.
We present a practical synthesis of both enantiomers of 1,2,3,4-tetrahydroisoquinoline derivative IPPAM-1 (1), which is a positive allosteric modulator (PAM) of prostacyclin receptor (IP) and a candidate for treatment of pulmonary arterial hypertension without the side effects caused by IP agonists. Assay of cAMP production by CHO-K1 cells stably expressing human IP clearly demonstrated that the IPPAM activity resides exclusively on the R-form of 1.  相似文献   

12.
Three 1-methoxy analogs of CP-47,497 (7, 8, and 19) have been synthesized and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. Although these compounds exhibit selectivity for the CB2 receptor none have significant affinity for either receptor. Modeling and receptor docking studies were carried out, which provide a rationalization for the weak affinities of these compounds for either receptor.  相似文献   

13.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

14.
Antagonists (inverse agonists) of the cannabinoid-1 (CB1) receptor showed promise as new therapies for controlling obesity and related metabolic function/liver disease. These agents, representing diverse chemical series, shared the property of brain penetration due to the initial belief that therapeutic benefit was mainly based on brain receptor interaction. However, undesirable CNS-based side effects of the only marketed agent in this class, rimonabant, led to its removal, and termination of the development of other clinical candidates soon followed. Re-evaluation of this approach has focused on neutral or peripherally restricted (PR) antagonists. Supporting these strategies, pharmacological evidence indicates most if not all of the properties of globally acting agents may be captured by molecules with little brain presence. Methodology that can be used to eliminate BBB penetration and the means (in vitro assays, tissue distribution and receptor occupancy determinations, behavioral paradigms) to identify potential agents with little brain presence is discussed. Focus will be on the pharmacology supporting the contention that reported agents are truly peripherally restricted. Notable examples of these types of compounds are: TM38837 (structure not disclosed); AM6545 (8); JD5037 (15b); RTI-12 (19).  相似文献   

15.
New substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized by replacing the 2,4-dichlorobenzyl and cyclohexyl moieties at the 3-carboxamide nitrogen of the previously reported CB1 receptor antagonists/inverse agonists 4 and 5. Several ligands showed potent affinity for the hCB1 receptor, with Ki concentrations comparable to the reference compounds 1, 4 and 5, and exhibited CB1 selectivity comparable to 1 and 2. Docking experiments and molecular dynamics (MD) simulations explained the potent hCB1 binding affinity of compounds 31 and 37. According to our previous studies, 31 and 37 formed a H-bond with K3.28(192), which accounted for the high affinity for the receptor inactive state and the inverse agonist activity. The finding of inhibition of food intake following their acute administration to rats, supported the concept that the CB1 selective compounds 4 and 52 act as antagonists/inverse agonists.  相似文献   

16.
Proanthocyanidins are oligomers of catechins that exhibit potent antioxidative activity and inhibit binding of oxidized low-density lipoprotein (OxLDL) to the lectin-like oxidized LDL receptor (LOX-1), which is involved in the onset and development of arteriosclerosis. Previous attempts aimed at developing proanthocyanidin derivatives with more potent antioxidative activity and stronger inhibition for LOX-1 demonstrated the synthesis of a novel proanthocyanidin derivative (1), in which the geometry of one catechin molecule in procyanidin B3 was constrained to a planar orientation. The radical scavenging activity of 1 was 1.9-fold higher than that of procyanidin B3. Herein, we synthesized another procyanidin B3 analogue (2), in which the geometries of both catechin molecules in the dimer were constrained to planar orientations. The radical scavenging activity of 2 was 1.5-fold higher than that of 1, suggesting that 2 may be a more effective candidate than 1 as a therapeutic agent to reduce oxidative stress induced in arteriosclerosis or related cerebrovascular disease.  相似文献   

17.
New oximes short-acting CB1 agonists were explored by the introduction of an internal oxime and polar groups at the C3 alkyl tail of Δ8-THC. The scope of the research was to drastically alter two important physicochemical properties hydrophobicity (log P) and topological surface area (tPSA) of the compound, which play a critical role in tissue distribution and sequestration (depot effect). Key synthesized analogs demonstrated sub-nanomolar affinity for CB1, marked reduction in hydrophobicity (ClogP~2.5–3.5 vs 9.09 of Δ8-THC-DMH), and found to function as either agonists (trans-oximes) or neutral antagonists (cis-oximes) in a cAMP functional assay. All oxime analogs showed comparable affinity at the CB2 receptor, but surprisingly they were found to function as inverse agonists for CB2. In behavioral studies (i.e. analgesia, hypothermia) trans-oxime 8a exhibited a predictable fast onset (~20?min) and short duration of pharmacological action (~180?min), in contrast to the very prolonged duration of Δ8-THC-DMH (>24?h), thus limiting the potential for severe psychotropic side-effects associated with persistent activation of the CB1 receptor. We have conducted 100?ns molecular dynamic (MD) simulations of CB1 complexes with AM11542 (CB1 agonist) and both trans-8a and cis-8b isomeric oximes. These studies revealed that the C3 alkyl tail of cis-8b orientated within the CB1 binding pocket in a manner that triggered a conformational change that stabilized the CB1 receptor at its inactive-state (antagonistic functional effect). In contrast, the trans-8a isomer’s conformation was coincided with that of the AM11542 CB1 agonist-bound structure, stabilizing the CB1 receptor at the active-state (agonistic functional effect). We have selected oxime trans-8a based on its potency for CB1, and favorable pharmacodynamic profile, such as fast onset and predictable duration of pharmacological action, for evaluation in pre-clinical models of anorexia nervosa.  相似文献   

18.
The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. The homology models of the ligand binding domains of the human umami receptor have been constructed based on crystallographic structures of the taste receptor of the central nervous system. Furthermore, the molecular simulations of the ligand binding domain show that the likely conformation was that T1R1 protein exists in the closed conformation, and T1R3 in the open conformation in the heterodimer. The molecular docking study of T1R1 and T1R3 in complex with four peptides, including Lys–Gly–Asp–GluSer–Leu–Leu–Ala, SerGlu–Glu, G1uSer, and Asp–GluSer, displayed that the amino acid residue of SER146 and Glu277 in T1R3 may play great roles in the synergism of umami taste. This docking result further validated the robustness of the model. In the paper, binding of umami peptide and the T1R1/T1R3 receptor was first described and the interaction is the base of umami activity theory.  相似文献   

19.
Peptide-based inducers of estrogen receptor (ER) α and androgen receptor (AR) degradations via the ubiquitin–proteasome system (UPS) were developed. The designated inducers were composed of two biologically active scaffolds: the helical peptide PERM3, which is an LXXLL-like mimic of the coactivator SRC-1, and various small molecules (MV1, LCL161, VH032, and POM) that bind to E3 ligases (IAPs, VHL, and cereblon, respectively), to induce ubiquitylation of nuclear receptors that bind to SRC-1. All of the synthesized chimeric E3 ligand-containing molecules induced the UPS-mediated degradation of ERα and AR. The PERM3 peptide was applicable for the development of the ERα and AR degraders using these E3 ligands.  相似文献   

20.
An effective and rapid method for the microwave-assisted preparation of the key intermediate for the total synthesis of tetrahydroprotoberberines (THPBs) including l-stepholidine (l-SPD) was developed. Thirty-one THPB derivatives with diverse substituents on A and D ring were synthesized, and their binding affinity to dopamine D1, D2 and serotonin 5-HT1A and 5-HT2A receptors were determined. Compounds 18k and 18m were identified as partial agonists at the D1 receptor with Ki values of 50 and 6.3 nM, while both compounds act as D2 receptor antagonists (Ki = 305 and 145 nM, respectively) and 5-HT1A receptor full agonists (Ki = 149 and 908 nM, respectively). These two THPBs compounds exerted antipsychotic actions in animal models. Further electrophysiological studies employing single-unit recording in intact animals demonstrated that 18k-excited dopaminergic (DA) neurons are associated with its 5-HT1A receptor agonistic activity. These results suggest that these two compounds targeted to multiple neurotransmitter receptors may present novel lead drugs with new pharmacological profiles for the treatment of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号