首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
为调查东湖通道工程对沿线底泥细菌群落结构和多样性可能造成的影响, 随着隧道施工的进程, 在东湖通道沿线的3个湖区中的19个采样点进行了3次采样, 通过PCR-DGGE结合分子克隆技术, 分析了细菌群落的群落结构及多样性。3批样品共检出细菌类群分别为5门18属、6门17属、5门11属。在门水平上, 底泥中的优势菌是变形菌门, 但其在总量中的比例随施工进程逐渐下降, 依次为86%、80.6%和43.9%。在属水平上, 施工初期的优势菌是埃希氏杆菌属, 施工后期却是Steroidobacter。通道施工初期, 汤菱湖、郭郑湖的湖心区域在属水平上的群落结构相似性较高, 与团湖差异显著; 接近施工区样点与远离施工区样点的底泥细菌群落存在显著差异; 因施工形成的临时封闭水域与敞水区除均有埃希氏杆菌属外, 其他菌属类群差异显著。施工后期的汤菱湖、郭郑湖及团湖的湖心区的底泥微生物群落结构趋于相似; 接近施工区样点与远离施工区样点的底泥细菌群落差异不显著; 封闭区和敞水区有相似的细菌群落结构。施工期间, 细菌群落的多样性指数的最高点都有出现在靠近施工区的位置。各批次样点的Simpson_1-D指数、Shannon_H指数、Margalef指数, 均随着施工进程而逐渐增加。因此, 东湖通道修建对通道沿线近距离的底泥细菌的群落结构和多样性产生了较显著的影响, 这种影响是暂时性还是持续性的, 尚需通道完工回填后的长期评估。研究将为进一步探讨通道修建等人为强干扰活动对浅水湖泊的可能环境影响和制定合理的生态修复策略提供理论基础和数据支撑。  相似文献   
2.
应用活体解剖和光镜技术对中华刺鳅消化系统形态与组织学特征进行了研究。结果显示:中华刺鳅属典型的无鳔管、有胃鱼类,消化道较短,约为体长的45%,整体呈“Z”字形。食道很短,后与胃相联,胃呈“V”型,胃分为贲门部、胃底部和幽门部,贲门胃自食道末端到胃的底部都具有丰富的腺组织分布,其长度也是胃部最长的,约占中华刺鳅消化管长度的23%。胃底部的肌肉发达较厚,但仅贲门部有丰富的腺组织。消化道各段在组织结构上差异显著。胃前,消化道肌肉层内环肌与外纵肌厚度之比自前向后逐渐增大,杯状细胞数量自前向后逐渐减少;胃后,肠道肌肉层内环肌与外纵肌厚度之比则逐渐减小,杯状细胞数量逐渐增多。消化腺分为肝脏和胰腺,肝脏与胰脏为独立的两个器官,胰脏分散分布于胃与肠道周围的系膜内,肉眼可见。未发现类似鲤科鱼类弥撒于肝脏或脾脏内的胰腺结构。中华刺鳅以日本沼虾和秀丽白虾为主要摄食对象,性凶猛,为典型的肉食性鱼类。  相似文献   
3.
洪湖碘泡虫(Myxobolus honghuensis)引起的鲫“喉孢子虫病”严重危害我国异育银鲫养殖。病原丰度是决定病害发生的最重要因素之一, 因此建立洪湖碘泡虫的定量检测方法, 不仅可用于异育银鲫“喉孢子虫病”的早期诊断, 也可应用于养殖系统中洪湖碘泡虫的定量监测, 为该病的暴发风险预警及防控措施的效果评价提供技术手段。研究根据洪湖碘泡虫的ITS基因序列, 设计合成一对特异性引物HHF/R, 建立了洪湖碘泡虫的SYBR Green Ⅰ实时荧光定量PCR方法, 并对该方法的特异性、灵敏性、重复性及应用性进行了验证。结果显示, 该方法能特异性检测出洪湖碘泡虫, 而与多涅茨尾孢虫、倪李碘泡虫、普洛宁碘泡虫、吴李碘泡虫之间无交叉反应; 最低检测限为3.02×101copies/μL, 灵敏性较常规PCR高出1000倍; 组内和组间重复性试验的变异系数均小于2%。应用该方法可定量检出洪湖碘泡虫全生活史阶段, 包括鱼体内移行发育的前孢子阶段及养殖系统环境, 如池塘水样及底泥样品中分布的洪湖碘泡虫。因此, 所建立的洪湖碘泡虫SYBR Green Ⅰ实时荧光定量PCR方法特异性好、灵敏度高、重复性稳定, 可应用于异育银鲫全养殖阶段洪湖碘泡虫的定性、定量监测。  相似文献   
4.
研究报道了中国首例摇蚊微孢子虫, 结合各发育阶段形态特征、生态学特征及分子特征, 鉴定其为萨梅诺娃新佩雷斯虫Neoperezia semenovaiae Issi, et al. 2012, 系我国新记录。萨梅诺娃新佩雷斯虫寄生于羽摇蚊幼虫脂肪体组织, 导致其体表呈白浊状。成熟孢子呈卵圆形, 孢子长(5.7±0.2) μm (5.3—6.3 μm), 宽(3.7±0.1) μm (3.4—4.0 μm)。透射电镜观察显示各发育阶段均为离核, 发育不同步, 与宿主细胞质直接接触。早期发育阶段为高电子密度的多核裂殖体阶段, 经原生质团分裂形成单核或多核产孢体, 进一步发育为单核孢子母细胞。孢子母细胞形状不规则, 周围被内质网环绕, 并逐渐形成微孢子虫的典型结构如极丝、极质体和三层孢壁等。成熟孢子卵圆形, 离核, 细胞核较大, 位于孢子正中央, 被大量核糖体包围。极质体分为两部分, 前半部分为海绵状, 后半部分薄膜状。锚状盘位于孢子前端, 呈蘑菇状。孢壁三层, 外层为高电子密度层, 厚26.5—62.7 nm, 中间层为电子透明层, 厚151.8—236.1 nm, 里层为质膜层。同型极丝, 30—31圈, 分2—3列排列。扩增获得其小核糖体序列为1356 bp, 序列比较发现其与俄罗斯列宁格勒区羽摇蚊的N. semenovaiae相似性为99.1%。系统发育关系分析表明N. semonovaiae与Neoperezia、Bryonosema、Schroedera属种类聚为一独立进化枝, N. semonovaiae种群出现明显的地理分化。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号