首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   3篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
水生植物腐烂分解对水质的影响   总被引:11,自引:0,他引:11  
对6种水生植物进行64 d的腐烂分解试验,对比不同水生植物腐烂分解过程中水体营养盐浓度的变化.结果表明: 6种水生植物的腐烂分解速率差别较大,浮叶植物分解速度最快,沉水植物次之,挺水植物最慢.不同水生植物腐解过程对水质影响不同,并与植物生物量密度相关.挺水植物芦苇腐解过程中的水体化学需氧量、总氮和总磷浓度最低;在茭草分解后期,水体化学需氧量和总氮浓度上升,水质变差.浮叶植物荇菜和莲腐解过程中,水体化学需氧量和总氮浓度高于其他植物.沉水植物菹草和狐尾藻腐解过程中,水体铵态氮、硝态氮和总磷浓度最高.对于同一种植物,不同生物量密度处理下,主要水质指标变化趋势相似.适量的植物残体的存在可以有效促进水体氮、磷等营养元素的循环,一定程度上去除硝态氮,降低水体氮负荷.  相似文献   
2.
几种水生植物腐解过程的比较研究   总被引:9,自引:0,他引:9  
曹培培  刘茂松  唐金艳  滕漱清  徐驰 《生态学报》2014,34(14):3848-3858
研究水生植物腐烂分解过程及其养分动态对认识水生态系统物质循环过程具有重要意义。通过室内植物分解模拟试验,对6种水生植物的腐解过程及腐解残余物成分的变化进行了比较研究。结果表明,在64 d的腐解过程中,浮叶植物的分解速率最快,沉水植物其次,挺水植物最慢;同种植物的分解速率及残余物成分变化在不同生物量密度组间存在一定差异,但总体趋势一致。分解过程中,植物残余物中P、纤维素、木质素含量的变化趋势种间差异较小,总体上P含量先迅速下降后缓慢上升,纤维素含量先下降后趋于稳定,木质素含量先上升后趋于稳定;植物残余物中C、N、半纤维素含量在分解初期种间的变化趋势不同,而分解后期则均为C含量上升,N、半纤维素含量趋于稳定。相关性分析结果表明,总体上,在整个分解周期中,初始N、P含量越大分解越快,初始纤维素、半纤维素、木质素含量、C/N、C/P、木质素/N等越大分解越慢;植物腐解不同阶段的质量指标对分解速率的影响有所不同,在分解前期,残余物中N含量越高分解越快,半纤维素含量、C/N、木质素/N越高,分解越慢,而后期木质素含量越高分解越慢,其它因子影响较小。  相似文献   
3.
为探究CO2浓度升高和不同氮肥水平下源库处理对粳稻茎鞘非结构性碳水化合物(NSC)积累和转运的影响,利用开顶式气室(OTC),设置2个CO2浓度([CO2]):对照(背景大气,a[CO2])和在背景大气[CO2]基础上升高200μmol·mol-1(e[CO2])。以常规粳稻"南粳9108"为试验材料,在OTC内采用盆栽方式,设置低N(N1,10 g N·m-2)、中N(N2,20 g N·m-2)和高N(N3,30 g N·m-2)3个施N水平。抽穗期源库改变设剪叶(LC)和疏花(SR)处理,以不处理为对照。测定并计算了抽穗期和成熟期叶片N含量、茎鞘NSC积累量(TMNSC)、NSC表观转运量(ATMNSC)及其对籽粒产量的表观贡献率(ACNSC)。采用方差分析、相关分析和逐步回归方法对上述观测数据进行分析。结果表明,[CO2]升高显著降低抽穗期叶片N含量,显著促进中N水平的NSC积累。在不同[CO2]和N水平下,SR处理均导致成熟期茎鞘TMNSC显著升高,ATMNSC和ACNSC显著降低;在背景大气和不同N水平下,LC处理均显著降低成熟期TMNSC,显著提高ATMNSC,但[CO2]升高下LC处理对成熟期TMNSC和ATMNSC均无显著影响。LC处理对籽粒产量及其构成未产生显著影响。粒叶比越高,成熟期TMNSC和千粒重越低,ATMNSC、ACNSC、籽粒产量和收获指数越高。综合影响ACNSC的因素为粒叶比、抽穗期和成熟期TMNSC;综合影响籽粒产量的因素为粒叶比、成熟期叶片N含量和TMNSC,这些综合影响均可用多元回归模型定量表述。  相似文献   
4.
为了解CO2浓度升高和N肥水平对水稻茎鞘内非结构性碳水化合物(NSC)含量和积累量的影响,利用开顶式气室(OTC),以常规粳稻"南粳9108"为试验材料,设置3个CO2浓度水平:对照T0(背景大气)、T0+120μmol·mol-1(T1)和T0+200μmol·mol-1(T2)。在OTC内采用盆栽方式,设置3个氮(N)肥水平:10 g N·m^-2(N1)、20 g N·m^-2(N2)和30g N·m^-2(N3)。分别于水稻抽穗期、灌浆期(抽穗后20 d)和成熟期对地上部分各器官生物量、茎鞘NSC含量以及顶部四张叶片的N含量进行分析。结果表明:CO2浓度升高对抽穗期叶N含量总体无显著影响,但显著降低灌浆期N2和N3水平的叶N含量;CO2浓度升高对抽穗期茎鞘NSC含量和积累量无显著影响,抽穗期置换到高CO2浓度环境使灌浆期茎鞘NSC积累显著增加,置换到低CO2浓度环境使NSC积累显著减少。同一CO2浓度条件下,NSC含量和积累量均为N1>N2>N3,且N1处理均显著高于N3处理,CO2浓度升高和N水平的交互作用对灌浆期茎鞘NSC含量影响显著。水稻产量在不同CO2浓度水平间无显著差异,但随施氮水平的提高而增加。抽穗期与灌浆期水稻茎鞘NSC含量和积累量与茎鞘干重呈极显著正相关,与叶N含量呈极显著负相关;叶N衰减越慢,灌浆期水稻茎鞘NSC残留比(RNSC)越低;结实率和产量与RNSC呈显著负相关,RNSC越大,茎鞘NSC转移的越少,结实率和产量越低。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号