首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2017年   1篇
  2011年   2篇
  2010年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
目的:观察青藤碱时大鼠肝脏缺血再灌注损伤的影响,探讨其保护大鼠肝脏缺血再灌注损伤作用的机制.方法:通过建立大鼠全肝缺血再灌注损伤模型,应用硝酸酶还原法测定肝脏缺血再灌注后60min血清NO水平变化;测定再灌注60 min后肝组织内MDA和SOD含量变化;再灌注60min取肝组织完成肝组织显微结构的观察.结果:肝脏缺血再灌注损伤后血清NO水平降低;青藤碱能提高再灌注后血清NO水平,且能改善肝脏缺血再灌注损伤的微循环,减轻肝细胞内超微结构的损害程度.结论:青藤碱对大鼠肝脏缺血再灌注损伤有保护作用,其主要作用机制是清除氧自由基和改善微循环.  相似文献   
2.
HPLC法测定甘草酸和甘草苷的含量   总被引:2,自引:1,他引:1  
目的:建立以HPLC法同时测定甘草中甘草酸和甘草苷含量的方法.方法:采用C18柱(4.6mmx15cm,5μm)为分析柱;以乙腈-1%醋酸溶液为流动相;流速为0.6ml·min-1;柱温25℃;采用外表法定量测定.结果表明甘草酸在4.16-28.0μg/ml范围内,回归方程为Y=10562.8X+30963(r=0.9999);甘草苷在13.0-23.4μg/ml范围内,回归方程为Y=12857.4X+16437(r=0.9997),平均加样回收率均大于96.08%,日内、日间的RSD值分别小于1.41%和1.85%.结论本方法操作简单、准确、快速、重现性好,其它组分干扰少,可用于甘草酸和甘草苷的含量测定.  相似文献   
3.
原儿茶酸对帕金森模型鼠脑组织抗氧化能力的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
目的:观察原儿茶酸对鱼藤酮诱导的帕金森模型小鼠脑组织中相关抗氧化酶活性的影响,为原儿茶酸治疗帕金森病提供理论依据。方法:选用昆明小鼠为实验动物,连续5周腹腔注射鱼藤酮(1mg/kg.d)建立帕金森模型,之后2周分别注射原儿茶酸(5mg/kg.d)和阳性药物美多芭(125mg/kg.d)。应用生物化学方法,观察原儿茶酸对帕金森模型小鼠中脑和纹状体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)活力以及脂质过氧化物丙二醛(MDA)含量的影响。结果:实验数据显示原儿茶酸可提高帕金森模型小鼠中脑和纹状体SOD、CAT、GSH-PX活力,降低MDA含量。同时病理切片染色显示原儿茶酸可减轻鱼藤酮诱导的脑组织损伤。结论:原儿茶酸具有神经保护作用,保护机制可能是提高脑组织内源性抗氧化酶活力,减少体内自由基的产生,进而减轻了脑组织的病理损伤。  相似文献   
4.
目的:观察原儿茶酸对鱼藤酮诱导的帕金森模型小鼠脑组织中相关抗氧化酶活性的影响,为原儿茶酸治疗帕金森病提供理论依据。方法:选用昆明小鼠为实验动物,连续5周腹腔注射鱼藤酮(1mg/kg.d)建立帕金森模型,之后2周分别注射原儿荼酸(5mg/kg.d)和阳性药物关多芭(125mg/kg.d)。应用生物化学方法,观察原儿茶酸对帕金森模型小鼠中脑和纹状体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)活力以及脂质过氧化物丙二醛(MDA)含量的影响。结果:实验数据显示原儿茶酸可提高帕金森模型小鼠中脑和纹状体SOD、CAT、GSH-PX活力,降低MDA含量。同时病理切片染色显示原儿茶酸可减轻鱼藤酮诱导的脑组织损伤。结论:原儿茶酸具有神经保护作用,保护机制可能是提高脑组织内源性抗氧化酶活力,减少体内自由基的产生。进而减轻了脑组织的病理损伤。  相似文献   
5.
天女木兰遗传多样性微卫星标记的研究   总被引:1,自引:0,他引:1  
以中国7个省份9个天女木兰种群为研究对象,采用微卫星技术(SSR)探讨天女木兰分子遗传多样性。结果显示:(1)9个天女木兰种群间存在较低的遗传多样性,种群平均Nei基因多样性指数(H)0.098 5,平均Shannon信息指数(I)0.146 8;种群间基因流为0.597 9(1),处于很低的水平。(2)天女木兰不同种群在长期进化过程中发生了一定的遗传分化,9个天女木兰种群的遗传距离为0.068 8~0.214 2,遗传相似度介于0.82~0.93之间。(3)聚类分析结果显示,9个天女木兰种群在进化上形成2个主要分枝,贵州麻江种群为一支,其他地区的种群为另一支,其中贵州麻江的天女木兰生存状况较差。(4)天女木兰的遗传多样性与种群分布的经度呈正相关。研究表明,天女木兰种群间的遗传多样性低,缺乏基因交流,可能是导致其濒危的主要遗传学机制。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号