首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2011年   2篇
排序方式: 共有5条查询结果,搜索用时 14 毫秒
1
1.
利用模拟退火算法优化Biome-BGC模型参数   总被引:2,自引:1,他引:1  
生态过程模型建立在明确的机理之上,能够较好地模拟陆地生态系统的行为和特征,但模型众多的参数,成为模型具体应用的瓶颈。本文以Biome-BGC模型为例,采用模拟退火算法,对其生理、生态参数进行优化。在优化过程中,先对待优化参数进行了选择,然后采取逐步优化的方法进行优化。结果表明,使用优化后的参数,模型模拟结果与实际观测更为接近,参数优化能有效地降低模型模拟的不确定性。文中参数优化的过程和方法,可为生态模型的参数识别和优化提供一种实例和思路,有助于生态模型应用区域的扩展。  相似文献   
2.
张廷龙  孙睿  张荣华  张蕾 《生态学杂志》2013,24(10):2746-2754
模型模拟和站点观测是陆地生态系统水、碳循环研究最主要的两种手段,但各有优势和不足,若二者相互结合,则能更准确地反映生态系统水、碳通量的动态变化.数据同化为模型与观测结合提供了一条有效的途径.本文采用哈佛森林环境监测站相关数据,利用集合卡曼滤波同化算法,将实测叶面积指数(LAI)和遥感LAI同化进入Biome BGC模型中,对该地区水、碳通量进行模拟.结果表明:与未同化模拟相比,将1998、1999和2006年实测LAI数据同化后,模型模拟碳通量(NEE)与通量观测NEE的决定系数(R2)平均提升8.4%;蒸散发(ET)的R2平均提升10.6%;NEE的绝对误差和(SAE)和均方根误差(RMSE)平均下降17.7%和21.2%,ET的SAE和RMSE平均下降26.8%和28.3%.将2000-2004年MODIS LAI 产品与模型同化后,NEE、ET模拟值与观测值间的R2分别提升7.8%和4.7%;NEE的SAE和 RMSE分别下降21.9%和26.3%,ET的SAE和 RMSE分别下降24.5%和25.5%.无论实测LAI还是遥感观测LAI,同化进入模型都能不同程度地提高水碳通量的模拟精度.  相似文献   
3.
精确估算水碳通量对陆地水碳循环研究意义重大,同时也极具挑战性。目前的估算精度有待进一步提高。传统的模型模拟和站点观测两种估算方法各有优势和不足,二者需结合进行研究。数据同化将观测融合到基于物理规律的模型中,尽可能得到模型状态变量和参数的最优估计,为模型和观测的结合提供了一条有效的途径。本文追踪陆地植被水碳通量过程模型与多源观测信息数据同化的研究进展;从植被水碳通量过程模型、数据同化算法、水碳通量模型数据同化3方面梳理了国内外相关研究进展,总结了研究中可能存在的问题:多源观测数据协同不足、同化策略相对简单、同化模型缺乏融合、同化尺度有待扩展;并从同化策略、模型选择、数据扩展、尺度效应、科学计算5个方面对今后的发展方向和趋势进行了分析和展望,以期为该领域研究者提供较全面的背景资料和信息,同时引发更多学者的关注。  相似文献   
4.
改进Biome-BGC模型模拟哈佛森林地区水、碳通量   总被引:1,自引:0,他引:1  
Biome-BGC模型通过耦合植被、土壤与大气间的水分与CO2交换过程,实现植被生产力的模拟,但土壤水平衡模块的不够完善,导致在长时间无降水情况下植被生产力模拟存在较大误差.针对这一问题,本文对Biome-BGC模型中土壤水分胁迫气孔导度方程、蒸散计算公式及土壤水分流失过程等3方面进行了改进和调整,利用改进的Biome-BGC模型模拟美国哈佛森林地区蒸散、植被生产力,并与地面通量观测值进行了比较.结果表明,改进后模拟精度有明显的提高,蒸散、植被生态系统生产力(NEE)与观测值间的决定系数分别由0.483和0.658提高到0.617和O.813,蒸散逐年均方根误差平均下降了48.7%,NEE逐年误差平方和平均下降了39.8%.改进后的模型模拟结果更接近观测值.  相似文献   
5.
生态过程模型是当前研究陆地生态系统水循环、碳循环有力的工具,但此类模型参数众多,参数的合理取值对模型模拟结果有重要影响.以往研究对模型参数的敏感性以及参数的优化取值有诸多的分析和讨论,但有关参数最优取值的时空异质性关注较少.本文以BIOME-BGC模型为例,在常绿阔叶林、落叶阔叶林、C3草地3种植被类型下,通过构建敏感性判别指数,筛选出模型的敏感参数,并在每种植被类型下选取两个试验站点,使用模拟退火算法结合实测通量数据构建目标函数,获取各站点敏感参数逐月的最优取值,然后构建时间异质性判别指数、空间异质性判别指数和时空异质性判别指数对模型敏感参数最优取值的时空异质性进行定量分析.结果表明:BIOME-BGC模型在3种植被类型下遴选出的敏感参数大部分一致,少数有差异,但参数的敏感性强弱在不同植被类型下的表现不尽相同;BIOME-BGC模型敏感参数的最优取值,大都具有不同程度的时空异质性,但不同植被类型下,敏感参数最优取值的时空异质性表现各异;敏感参数中与植被生理、生态相关的参数,其时空异质性相对较小,而与环境、物候相关的参数,其时空异质性普遍较大;在3种植被类型下,模型敏感参数最优取值的时间异质性与空间异质性表现出显著的线性相关性;依据其最优取值的时空异质性,可对BIOME-BGC模型敏感参数进行类型划分,以便在实践应用中采取不同的参数率定策略.本研究结论有助于加深对生态过程模型参数特性及最优取值的理解,可为实践应用中模型参数的合理取值提供一种思路和参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号